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The linear algebra exercise of the day

Let V be a real vector space of dimension 4n+2 (n is an integer)
equipped with a quadratic form q of signature (2n+ 1, 2n+ 1).
Let E and F be two maximal isotropic subspaces of V . This
means that q(v) = 0 for every v ∈ E ∪ F and
dimE = dimF = 2n+ 1.

There exists thus an element g in the orthogonal group O(V, q)
such that g(E) = F (Witt’s theorem).

Exercise
If E and F are transverse (that is, if E ∩ F = {0}), then
g ̸∈ SO(q) (that is, det(g) = −1).
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Lie algebra setting

G a semisimple Lie group ; g its Lie algebra. For example,
G = O(p, p+ k) is the orthogonal group of a quadratic form q of
signature (p, p+ k) [p and k are positive integers]. For
definiteness we will realize O(p, p+ k) as a subgroup of
GL2p+k(R) and q will be the form

q(x1, . . . , x2p+k) = 2

p∑
i=1

(−1)i+pxix2p+k+1−i −
k∑

i=1

x2p+i.

K is a maximal compact subgroup of G ; k its Lie algebra. One
can take K = G ∩O(2p+ k).

A Cartan subspace a is a maximal (Abelian) subalgebra
orthogonal to k with respect to the Killing form.

One can take a to be the space of matrices of the form
diag(λ1, . . . , λp, 0, . . . , 0,−λp, . . . ,−λ1), (λ1, . . . , λp) ∈ Rp
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Lie algebra setting (continued)
For β ∈ a∗, set gβ = {X ∈ g | [A,X] = β(A)X,∀A ∈ a}
and Σ = {β ∈ a∗ ∖ {0} | gβ ̸= 0}.
The maps εi : a → R [i varies from 1 to p] defined by
εi(diag(λ1, . . . , λp, 0, . . . , 0,−λp, . . . ,−λ1)) = λi are linear and
form a basis of a∗. the roots are the ±εi ± εj (for i < j) and the
±εi.

Choosing <a∗ a total linear ordering (the lexicographic order),
one defines Σ+ = {α ∈ Σ | 0 <a∗ α} the positive roots. Here
εi ± εj , i < j and +εi.

Let α belongs to Σ+, when there are β, γ in Σ+ such that
α = β + γ, one has gα = [gβ, gγ ] and the root α is called
decomposable, it is called simple otherwise. The simple roots are
αi = εi − εi+1 and αp = εp.

Denote ∆ ⊂ Σ+ the set of simple roots.
Every positive root decomposes β =

∑
∆ nαα where nα ≥ 0.
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The Weyl group
It is the automorphism group W of Σ ⊂ a∗. It is the group of
signed permutation matrices, isomorphic to {±1}p ⋊ Sp.
For each α in Σ there is a unique hyperplane reflection
contained in W such that sα(α) = −α. si = sαi , sp changes the
sign of the last coordinate and si exchanges the coordinates in
the indices i and i+ 1.

W is generated by {sα}α∈∆.
There is a unique element wmax of W sending Σ+ to
Σ− = −Σ+ = Σ∖ Σ+. It is the longest length element.
wmax = − Id.

The map ι : α 7→ −wmax(α) sends Σ+ to Σ+ and ∆ to ∆. It is
called the opposition involution. The opposition involution is
trivial.

W is isomorphic to NK(a)/ZK(a). For w in W , we will
sometimes denote ẇ a representative of w in NK(a).
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sl2-triples, fundamental weights

Those are triples (x, y, h) in g such that [x, y] = h, [h, x] = 2x

For example x =

(
0 1
0 0

)
, y =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
in sl2(R).

For all α in ∆ we will choose an sl2-triple (xα, x−α, hα) with
x±α ∈ g±α.
If i < p, one can set xi = Ei,i+1 + E2p+k−i,2p+k+1−i and
x−i =

txi, and xp = Ep,p+1 + Ep+1,p+k+1, x−p =
txp.

The element hα does not depends on the choices. The family
{hα}α∈∆ is a basis of a. The dual basis {ωα}α∈∆ of a∗ is called
the fundamental weights. ωi = ε1 + · · ·+ εi.

Let exp: g → G be the exponential. For every α, one can choose
ṡα = exp (π/2(xα − x−α)) to represent in NK(a) the element sα.
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Parabolic subgroups, flag manifolds
• The subspace u∆ =

∑
β∈Σ+ gβ is a nilpotent subalgebra

generated by
⋃

α∈∆ gα. Similarly uopp∆ =
∑

β∈Σ+ g−β .
• For every Θ ⊂ ∆ we let uΘ to be the ideal of u∆ generated by⋃

α∈Θ gα. One has uΘ =
∑

α∈Σ+∖Span(∆∖Θ) gα. Similarly set
uoppΘ =

∑
α∈Σ+∖Span(∆∖Θ) g−α.

• The standard parabolic subgroups are PΘ = NG(uΘ),
P opp
Θ = NG(u

opp
Θ ).

• The unipotent radical of PΘ (resp. P opp
Θ ) is UΘ = exp(uΘ)

(resp. Uopp
Θ = exp(uoppΘ )).

• LΘ = PΘ ∩ P opp
Θ is called a Levi factor. One has

PΘ = UΘ ⋊ LΘ.
• FΘ is the space of parabolic groups conjugated to PΘ ; Fopp

Θ

is the space of parabolic groups conjugated to P opp
Θ . As P opp

Θ

is conjugated to PΘ (by ẇmax), Fι(Θ) = Fopp
Θ .

• As PΘ = NG(PΘ), FΘ ≃ G/PΘ.
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Parabolic subgroups (continued)
For all i ≤ p, Pi (resp. P opp

i ) is the stabilizer of the (isotropic)
i-dimensional space generated by the i first (resp. last) basis
vectors.
Fi = Fopp

i is naturally isomorphic to the space of isotropic
i-planes.
More generally, Fi1<···<iℓ is the space of partial flags
(E1 ⊂ · · · ⊂ Eℓ) with dimEm = im and Eℓ isotropic.

A pair (P,Q) of parabolic subgroups is transverse if it is
conjugated to (PΘ, P

opp
Θ ). This is equivalent to P ∩Q being

reductive.
Two isotropic i-dimensional space E and F in Fi are transverse
if and only if they are . . . transverse! that is E⊥q ∩ F = 0.

Lemma
The map uoppΘ → FΘ | X 7→ exp(X) · PΘ is one-to-one onto the
space of elements transverse to P opp

Θ
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Embeddings into projective space
Let η =

∑
∆ kαωα be a dominant weight and let τ : G → GL(V )

be the associated irreducible representation.
If η = ωi take V =

∧iR2p+k.
We denote by Vη the eigenspace of a (with respect to τ) relative
to the eigenvalue η. This is a line in V . Denote by V ◦

η the
a-invariant supplementary hyperplane.

Lemma
Let Θ = {α ∈ ∆ | kα = 0}. Then the stabilizer of Vη in G is PΘ,
the stabilizer of V ◦

η is P opp
Θ .

We can therefore build (one-to-one) maps

iΘ : FΘ −→ P(V ) | g · PΘ 7−→ τ(g) · Vη

ioppΘ : Fopp
Θ −→ P∗(V ) | g · P opp

Θ 7−→ τ(g) · V ◦
η

Lemma
(P,Q) ∈ FΘ ×Fopp

Θ are transverse if and only if
(iΘ(P ), ioppΘ (Q)) ∈ P(V )× P∗(V ) are transverse.
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The linear algebra exercise of the day

Let V = Symd−1R2 ≃ Rd−1[X,Y ] be the space of homogenous
polynomials in 2 variables.

V has a natural basis ei = Y i−1Xd−i (i = 1, . . . , d).

V and V ∗ bear a natural action of SL2(R).

Exercise
t 7→

〈(
1 t
0 1

)
· e∗1,

(
0 1
−1 0

)
· e1

〉
is a non zero multiple of

t 7→ td.
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The cross-ratio on the projective line, the collar lemma

The cross-ratio on the projective line P1(R) = R ∪ {∞} is

defined by the formula [x, y,X, Y ] =
X − x

X − y

Y − y

Y − x
The normalization is so that [∞, 0, 1, t] = t. This means that
[x, y,X, Y ] belongs to [0, 1] if Y is between y and X,
[x, y,X, Y ] ≥ 1 if Y is between X and x, etc.

Let M be a complete hyperbolic surface.
Let α, β be intersecting geodesics on M and ℓ(α), ℓ(β) their
lengths.

Theorem (Collar lemma)

1

exp(ℓ(α))
+

1

exp(ℓ(β))
≤ 1.
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Collar lemma (the proof)

[Two nice drawings should go here]

Let A and B in SL2(R) be the holonomies of α and β
respectively. Those are diagonalizable and thus admit attracting
a+, b+ and repelling a−, b− fixed points in P1(R).

The relation between the length and the cross-ratio is the
following exp(ℓ(α)) = [a+, a−, x, A(x)]

Magical relation [a−, b+, a+, A(b+)] + [a−, a+, b+, A(b+)] = 1.

One has [a−, a+, b+, A(b+)] = exp(−ℓ(β)).

[a−, b+, a+, A(b+)] = [a−, b−, a+, A(b+)][b−, b+, a+, A(b+)]

≥ [b−, b+, a+, B(a+)][b−, b+, B(a+), A(b+)]

≥ [b−, b+, a+, B(a+)] = exp(−ℓ(β))

4/11



Projective cross-ratios

V a real vector space
On OV = {(x, y,X, Y ) ∈ P(V )2 × P∗(V )2 | X ⋔ y and Y ⋔ x},
we define

bV (x, y,X, Y ) =
⟨Ẋ, ẋ⟩
⟨Ẋ, ẏ⟩

⟨Ẏ , ẏ⟩
⟨Ẏ , ẋ⟩

Cocycle relations bV (x, y,X, Y )bV (y, z,X, Y ) = bV (x, z,X, Y )

For a loxodromic element A ∈ GL(V ),
bV (a

+, a−, X,A ·X) = λmax(A)/λmin(A)
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Symplectic interpretation

Let ωV be the natural symplectic form on V × V ∗ = T ∗V .
The map µ : V × V ∗ → R | (v, φ) 7→ ⟨φ, v⟩ is a moment for the
R∗-action λ · (v, φ) = (λv, λ−1φ).

The symplectic reduction µ−1(1)/R∗ carries a symplectic form ω
and is isomorphic to UV = {(x,X) ∈ P(V )× P∗(V ) | X ⋔ x}.

Proposition
Let f : [0, 1]2 → UV be a C1 map such that, ∀t ∈ [0, 1],
f(0, t) = (x, ∗), f(1, t) = (y, ∗) and ∀s ∈ [0, 1], f(s, 0) = (∗, X),
f(s, 1) = (∗, Y ), then

bV (x, y,X, Y ) = exp
(∫

[0,1]2
f∗ω

)
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Constructing cross-ratio on flag manifolds

Let G,Θ, PΘ, etc. as in lecture 1.
Suppose that τ : G → GL(V ) is a (continuous) representation
such that there exists a one-to-one τ -equivariant map

iΘ : FΘ −→ P(V )

Proposition
Then there is ioppΘ : Fopp

Θ −→ P∗(V ) (one-to-one, equivariant)
with the property that P ⋔ Q ⇒ iΘ(P ) ⋔ ioppΘ (Q).

Define

OΘ =
{
(x, y,X, Y ) ∈ (FΘ)

2 × (Fopp
Θ )2 | X ⋔ y and Y ⋔ x

}
bτ (x, y,X, Y ) = bV

(
iΘ(x), iΘ(y), i

opp
Θ (X), ioppΘ (Y )

)
.
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Remembering some decompositions

g = a⊕ zk(a)⊕
⊕
α∈Σ

gα

p∆ = a⊕ zk(a)⊕
( ⊕

α∈Σ+

gα

)
pΘ =

( ⊕
α∈Σ+∩Span(∆∖Θ)

g−α

)
⊕
(
a⊕ zk(a)⊕

⊕
α∈Σ+

gα

)

Let τ : G → GL(V ), iΘ : FΘ → P(V ) as above.

The line L = iΘ(PΘ) is PΘ-invariant ⇒ L is an eigenline for the
action of a, is cancelled by u∆ and also by

⋃
α∈Θ g−α.

The subspace W = ⟨τ(G) · L⟩ is an irreducible representation
of G with highest weight space L. Can (and will) assume
V = W .
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Continuing the analysis of V

V =
⊕

κ∈P (V ) Vκ, P (V ) ⊂
∑

∆ Zωα, denote η the weight such
that L = Vη. Then η ∈

∑
∆Nωα and uniquely determines V .

Vη invariant by g−α ⇔ η(hα) = 0.

One then get η ∈
∑

α ∈ ΘN∗ωα

The hyperplane V ◦
η =

∑
κ∈P (V )∖{η} Vκ is tranverse to Vη and is

P opp
Θ -stable.

The maps

iΘ : FΘ −→ P(V ) | g · PΘ 7−→ τ(g) · Vη

ioppΘ : Fopp
Θ −→ P∗(V ) | g · P opp

Θ 7−→ τ(g) · V ◦
η

satisfy all the wanted properties.

Denote bη(x, y,X, Y ) = bV
(
iΘ(x), iΘ(y), i

opp
Θ (X), ioppΘ (Y )

)
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Naturality properties

Lemma
One has bη1+η2 = bη1bη2 , bkη = (bη)k.

Proof:
The map P(V )× P(W ) −→ P(V ⊗W ) sends bV bW to bV⊗W
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Symplectic interpretation (bis)
There is a symplectic form ωη on UΘ ⊂ FΘ ×Fopp

Θ such that

Proposition
Let f : [0, 1]2 → UΘ be a C1 map such that, ∀t ∈ [0, 1],
f(0, t) = (x, ∗), f(1, t) = (y, ∗) and ∀s ∈ [0, 1], f(s, 0) = (∗, X),
f(s, 1) = (∗, Y ), then

bη(x, y,X, Y ) = exp
(∫

[0,1]2
f∗ωη

)

The tangent space at a point (x,X) to UΘ identifies with
uoppΘ × uΘ.

The formula is

ωη
(
(v1, v2), (w1, w2)

)
= η

(
[v1, w2]− [v2, w1]

)
.
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The linear algebra exercise of the day

1
. . . tF

1
1

A
. . .

1


t ∈ R, where A ∈ Mℓ,k(R) and where F ∈ Mk,ℓ(R) has rank one

Exercise
There is a unique t ∈ R such that this matrix is singular.

Geometric interpretation:
The first k columns represent an k-plane x, the last ℓ columns
represent a ℓ-plane yt;
The conclusion says that there is a unique t such that yt is not
tranverse to x.
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The main result (I)

Theorem
This happens in every flag manifold.

G, FΘ, Fopp
Θ , PΘ, P opp

Θ , UΘ, Uopp
Θ , LΘ, pΘ, uΘ, a, . . .

g = a⊕ zk(a)⊕
⊕
α∈Σ

gα

aL := the centralizer of l in a; aL =
⋂

α∈∆∖Θ

kerα.

Proposition (Kostant, 2010)
The weight decomposition of uΘ w.r.t. the action of aL coincides
with the decomposition into irreducible L-summands:

uΘ =
⊕
ℵ∈P

uℵ, P ⊂ a∗L, [uℵ, uℶ] = uℵ+ℶ.
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Photons

uΘ =
⊕
ℵ∈P

uℵ, P ⊂ a∗L

In fact P = {α|aL}α∈Σ+∖Span(∆∖Θ); indecomposable weights
P ∖ (P + P ) naturally identifies with Θ [via Θ → P | α 7→ α|aL ]

For every α ∈ Θ, uα ⊃ uhighα = gα (w.r.t. the action of a)

Consider xα ∈ uhighα

Definition
Φα := {exp(txα) · P opp

Θ } ⊂ Fopp
Θ is the α-photon ; An α-photon

is Φ = g · Φα for some g ∈ G.

Lemma
Φα is homogenous under the action of SL2(R)α [the subgroup
tangent to ⟨xα, x−α, hα⟩] and is ≃ to P1(R).
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Properties of Photons

Lemma
For all x ∈ Fopp

Θ , so that TxFopp
Θ ≃ uΘ and for all non zero v in

this tangent space
• There is Φ such that x ∈ Φ and v ∈ TxΦ ⇐⇒ v ∈ LΘ · uhighα ⊂

uα ⊂ uΘ ≃ TxFopp
Θ .

• In this case, there is a unique such Φ.

Remark
Zα = P

(
LΘ · xα

)
⊂ P(uα) is closed

⇒ the space of α-photons is closed.
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Example(s)

G = O(p, p+ k), ∆ = {α1, . . . , αp}, choose Θ = {α1, . . . , αp−1}
Then
FΘ = Fopp

Θ =
{
(E1 ⊂ · · · ⊂ Ep−1) | dimEi = i, Ep−1 isotropic

}
.

Fix x = (E1, . . . , Ep−1)

For every i < p− 1, there is a unique αi-photon through x :
Φi =

{
(F1, . . . , Fp−1) ∈ FΘ | ∀j ̸= i, Fj = Ej

}
The isomorphism with the projective line is concrete:
Φi → P(Ei+1/Ei−1) | (F1, . . . , Fp−1) 7→ Fi/Ei−1

For every isotropic p-plane Ep containing Ep−1,
Φp−1 =

{
(F1, . . . , Fp−1) ∈ FΘ | ∀j ̸= p, Fj = Ej , Fp−1 ⊂ Ep

}
is a

αp-photon through x (and all αp-photon has this form)
Φp−1 → P(Ep/Ep−2) | (F1, . . . , Fp−1) 7→ Fp−1/Ep−2
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Photon projection

Define VΦ =
{
x ∈ FΘ | ∃y ∈ Φ, x ⋔ y

}
Theorem
For every x in VΦ, there is a unique y in Φ such that y is not
transverse to x. Set pΦ(x) = y.
The map pΦ : VΦ → Φ has connected fibers.

Proof.
Up to G-action can assume x = PΘ, P opp

Θ ∈ Φ and Φ = Φα.
Then one needs to have y = ṡα · P opp

Θ .

Let U = {exp(tx−α)} ⊂ SL2(R)α, one “sees” that
Vy = {z ∈ FΘ | z ⋔ y} ≃ U × p−1

Φα
(ṡα · y).
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Example(s) (continued)

(E1, . . . , Ep−1) ∈ F1,...,p−1 [and choose also an isotropic p-plane
Ep containing Ep−1 in order to treat the case i = p− 1 on an
equal footing]

Φi =
{
(F1, . . . , Fp−1) ∈ F1,...,p−1 | ∀j ̸= i, Fj = Ej , Fi ⊂ Ep

}
VΦi =

{
(F1, . . . , Fp−1) ∈ F1,...,p−1 | ∀j ̸= i, Fj ⋔ Ej

}
pΦi : VΦi → Φi

(F1, . . . , Fp−1) 7→
(
. . . , Ei−1, Ei−1 ⊕ F⊥

i ∩ Ei+1, Ei+1, . . .
)
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The main result (II)

Choose η =
∑

α∈Θ nαωα (nα ∈ N) so that bη is defined on
OΘ ⊂ FΘ ×FΘ ×Fopp

Θ ×Fopp
Θ

Fix α ∈ Θ and an α-photon Φ.

Theorem
Let x, y ∈ Φ. For all z, w in VΦ such that
pΦ(z) = pΦ(w) ̸∈ {x, y}, then bη(x, y, z, w) = 1.

Let x, y ∈ Φ. For all z, w in VΦ, with pΦ(z) ̸= y and pΦ(w) ̸= x,
then

bη(x, y, z, w) = [x, y, pΦ(z), pΦ(w)]
nα
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