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The linear algebra exercise of the day

Let V be a real vector space of dimension 4n + 2 (n is an integer)
equipped with a quadratic form ¢ of signature (2n + 1,2n + 1).
Let FF and F' be two maximal isotropic subspaces of V. This
means that ¢(v) = 0 for every v € EU F and

dim F =dim F = 2n + 1.

There exists thus an element ¢ in the orthogonal group O(V, q)
such that g(EF) = F (Witt’s theorem).

Exercise
If E and F are transverse (that is, if £ N F = {0}), then
g & SO(q) (that is, det(g) = —1).
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Lie algebra setting

G a semisimple Lie group ; g its Lie algebra. For example,
G = O(p,p + k) is the orthogonal group of a quadratic form ¢ of
signature (p,p + k) [p and k are positive integers|. For
definiteness we will realize O(p,p + k) as a subgroup of
GL2p1x(R) and ¢ will be the form
P k
q(r1, .., Topip) = QZ(_l)l+pxix2p+k+l—i — inH.
i=1 i=1
K is a maximal compact subgroup of G ; ¢ its Lie algebra. One
can take K = GNO(2p + k).

A Cartan subspace a is a maximal (Abelian) subalgebra
orthogonal to ¢ with respect to the Killing form.

One can take a to be the space of matrices of the form

diag(/\l,...,)\p,O,...,O,—/\p,...,—)\l), (Al,...,Ap) € R?
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Lie algebra setting (continued)

For f e a*, set gg={X € g|[A X]=p(A)X,VA € a}

and ¥ = {f € a* ~ {0} | gg # 0}.

The maps €;: a — R [i varies from 1 to p| defined by
gi(diag(A1,...,Ap,0,...,0, =Xy, ..., —A1)) = A; are linear and
form a basis of a*. the roots are the +e; £ ¢; (for ¢ < j) and the
i5i~

Choosing <4+ a total linear ordering (the lexicographic order),
one defines ¥ = {a € ¥ | 0 <q+ a} the positive roots. Here
gkej, 1<y and +¢;.

Let o belongs to ¥, when there are 3, in ¥7 such that

a = 3+, one has g, = [gg, 8] and the root « is called
decomposable, it is called simple otherwise. The simple roots are
a; =g; —giy1 and o) = gp.

Denote A C X7 the set of simple roots.

Every positive root decomposes 3 = ) \ nqa where nq > 0.
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The Weyl group

It is the automorphism group W of 3 C a*. It is the group of
signed permutation matrices, isomorphic to {£1}? x S),.

For each « in X there is a unique hyperplane reflection
contained in W such that so(®) = —a. s; = s4,, S, changes the
sign of the last coordinate and s; exchanges the coordinates in
the indices ¢ and ¢ + 1.

W is generated by {sa},cn-

There is a unique element wpyay of W sending X7 to
YT =-3NT =¥ X" It is the longest length element.
Wmax = — 1d.

The map ¢: & — —Wnpax(a) sends X to LT and A to A. Tt is
called the opposition involution. The opposition involution is
trivial.

W is isomorphic to Nk (a)/Zk(a). For w in W, we will
sometimes denote w a representative of w in Nk (a).
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sly-triples, fundamental weights

Those are triples (x,y, h) in g such that [z,y] = h, [h,z] = 2z
F lea= (2 N y=( Y a=(t ) insum)
or example = { - o Loy=1{, o) h=1{, _; 2(R).

For all a in A we will choose an sly-triple (zq4,Z_q, ho) With

Tta € O+a-
If © < p, one can set x; = E; ;11 + Eopik—i2p+k+1—i and

t. _ _t
T =", and xp = Eppi1 + Ept1 prry1, Top = "Tp.

The element h, does not depends on the choices. The family
{ha}aca is a basis of a. The dual basis {wq }aca of a* is called

the fundamental weights. w; =1 + -+ + &;.

Let exp: g — G be the exponential. For every «, one can choose
S0 = exp (7/2(zo — x_qa)) to represent in Nk (a) the element s,.
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Parabolic subgroups, flag manifolds

The subspace up = gex+ 04 1s a nilpotent subalgebra
generated by J,ca ga. Similarly uX” = 3 5 01 g5
For every ® C A we let ug to be the ideal of ua generated by
Uaco 9a- One has ug = Za62+\Span(A\®) go. Similarly set
WP = 3

) a€S+Span(A~0) I—a-
The standard parabolic subgroups are Po = Ng(ug),
PSP = Ng(uPP).
The unipotent radical of Pg (resp. Pg"™) is Ug = exp(ue)
(resp. UZP = exp(ug®)).
Lo = Po N Pg™ is called a Levi factor. One has
P@ = U@ A L@.
Fo is the space of parabolic groups conjugated to Pg ; fgpp
is the space of parabolic groups conjugated to Pg PP As POpp
is conjugated to Po (by tmax), Fue) = Fo -

As P@ = Ng(Pg), f@ >~ G/P@
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Parabolic subgroups (continued)

For all i < p, P; (resp. P*?) is the stabilizer of the (isotropic)
i-dimensional space generated by the i first (resp. last) basis
vectors.

Fi = F;PP is naturally isomorphic to the space of isotropic
i-planes.

More generally, F;, <...<;, is the space of partial flags

(Ey1 C --- C Ey) with dim E,,, = i,, and Ej isotropic.

A pair (P, Q) of parabolic subgroups is transverse if it is
conjugated to (P, Pg™). This is equivalent to P N Q being
reductive.

Two isotropic i-dimensional space F and F' in F; are transverse
if and only if they are ...transverse! that is Ete N F = 0.

Lemma

The map ug® — Fo | X — exp(X) - Pg is one-to-one onto the
opp

space of elements transverse to Py
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Embeddings into projective space

Let 7 = ) A kawa be a dominant weight and let 7: G — GL(V')
be the associated irreducible representation.

If n = w; take V = \"R¥>tF,

We denote by V;, the eigenspace of a (with respect to 7) relative
to the eigenvalue 7. This is a line in V. Denote by V,> the
a-invariant supplementary hyperplane.

Lemma
Let © = {a € A | ko = 0}. Then the stabilizer of V;, in G is Pe,
the stabilizer of V,? is Pg™.

We can therefore build (one-to-one) maps
io: Fo — P(V) |g-Por—7(g)- Vy
i Fo b — P (V) |g- P —7(g) -V
Lemma

(P,Q) € Fo x FG® are transverse if and only if
(i0(P),ig"(Q)) € P(V) x P*(V) are transverse.
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The linear algebra exercise of the day

Let V = Sym? 'R? ~ Ry_;[X, Y] be the space of homogenous
polynomials in 2 variables.

V has a natural basis e; = Y71X97 (i = 1,...,d).

V and V* bear a natural action of SLy(R).

Exercise

1Lty (0 1 , |
t— <(O 1) - ey, (_1 0) . €1> is a non zero multiple of

t— td,
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The cross-ratio on the projective line, the collar lemma

The cross-ratio on the projective line P!(R) = R U {oc} is

N vl
defined by the formula [z,y, X,Y] = ¥ z v i
The normalization is so that [00,0,1,¢] = ¢. This means that
[z,y, X,Y] belongs to [0,1] if Y is between y and X,
[z,y,X,Y] > 1if Y is between X and z, etc.

Let M be a complete hyperbolic surface.
Let «, B be intersecting geodesics on M and ¢(a), ¢(3) their
lengths.

Theorem (Collar lemma)

1 4 1 <1
exp(f(r))  exp(¢(B)) ~
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Collar lemma (the proof)

[Two nice drawings should go here]

Let A and B in SL2(R) be the holonomies of o and /3
respectively. Those are diagonalizable and thus admit attracting
at,bT and repelling a~, b~ fixed points in P!(R).

The relation between the length and the cross-ratio is the
following exp(¢(a)) = [a™,a™, z, A(z)]
Magical relation [a=,b%,a™, A(b1)] + [a™,a™,bT, A(bT)] = 1.
One has [a™,a™,b", A(b1)] = exp(—£(3)).

[a=, bt at, AT =[a, b ,a", ABT)][b™,bF,at, A(bT)]
> [b7, bt at, B(aD)[b~, 0", B(a™), A(bT))
> [b7,0%,a", B(a™)] = exp(—£(B))
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Projective cross-ratios

V a real vector space
On Oy = {(z,y, X,Y) e P(V)2 x P*(V)? | X hy and YV rh 2},
we define

X,
by(z,y, X,Y) = -
v(z,y ) X,

Y,y
Y, &

—~
~
—~
~

—~
~
—~
~

Cocycle relations by (z,y, X, Y )by (y, 2, X, Y) = by (2,2, X,Y)

For a loxodromic element A € GL(V),
by(at,a™, X, A+ X) = Aax(A4)/Amin(A)
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Symplectic interpretation

Let w" be the natural symplectic form on V x V* = T*V.
The map p: V x V* = R| (v,¢) — (p,v) is a moment for the
R*-action X - (v, ) = (Av, A\~ 1p).

The symplectic reduction ~1(1)/R* carries a symplectic form w
and is isomorphic to Uy = {(z, X) e P(V) x P*(V) | X th z}.

Proposition
Let f:[0,1)2 = Uy be a C* map such that, Vt € [0,1],

f(0,t) = (x,%), f(1,t) = (y,*) and Vs € [0,1], f(s,0) = (x, X),
f(s,1) = (%,Y), then

bV(xaya Xa Y) = exp(/

[0,1]2

frw)
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Constructing cross-ratio on flag manifolds

Let G, 0, Pg, etc. as in lecture 1.
Suppose that 7: G — GL(V) is a (continuous) representation
such that there exists a one-to-one T-equivariant map

i@: J—"@ — ]P)(V)
Proposition
Then there is ig" : Fg'¥ — P*(V) (one-to-one, equivariant)
with the property that P Q = ie(P) M ig*(Q).
Define
Og = {(x,y,X, Y)e (.7:@)2 X (.F(Spp)2 | X My and Y h :r:}
be(x,y, X, Y) = by (ie(2), 6 (y),ig " (X),ig" (V).
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Remembering some decompositions

g=a@ (@) e Poa

aEY
pa=a® ()@ < b ga>
aext
Po = ( o, g—a> ® <a@3e(a) o P ga>
aeXtNSpan(A\0O) aext

Let 7: G — GL(V), ig: Fo — P(V) as above.

The line L = ig(Pg) is Pe-invariant = L is an eigenline for the
action of a, is cancelled by ua and also by |J,cq 9-a-

The subspace W = (7(G) - L) is an irreducible representation
of G with highest weight space L. Can (and will) assume
V=Ww.
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Continuing the analysis of V'

V =@.cp) Ve, P(V) C YA Zwa, denote n the weight such
that L =V,,. Then n € ), Nw, and uniquely determines V.

V,, invariant by g_o < n(hqe) = 0.
One then get n € >~ a € ON*w,

The hyperplane V> =3~ P(V)~{n} Vr is tranverse to V;, and is
PPP-stable.

The maps

io: Fo — P(V) |g-Por—7(g)- Vy
ig": FQT — P (V)| g- P& —7(9) - Vy

satisfy all the wanted properties.
Denote b'(z,y, X,Y) = by (ie(z),i0(y), i3 " (X),ig " (Y))
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Naturality properties

Lemma
One has bn+n2 = pmpnz  pkn — (b")k.

Proof:
The map P(V) x P(W) — P(V ® W) sends by by to bygw
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Symplectic interpretation (bis)
There is a symplectic form w” on Ug C Fo x Fg'¥ such that

Proposition
Let f:[0,1]2 = Uo be a C* map such that, ¥t € [0, 1],

£(0,t) = (x,%), f(1,t) = (y,*) and Vs € [0,1], f(s,0) = (%, X),
f(s,1) = (x,Y), then

b (x,y, X,Y) = exp(/ f*w")

[0,1]2

The tangent space at a point (z, X) to Ug identifies with

opp

The formula is

W' ((v1,v2), (w1, w2)) = n([v1, w2] — [v2, w1]).
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The linear algebra exercise of the day

tF

A

1
t € R, where A € My, (R) and where F' € My, ,(R) has rank one

Exercise
There is a unique ¢t € R such that this matrix is singular.

Geometric interpretation:
The first & columns represent an k-plane x, the last £ columns
represent a £-plane y;

The conclusion says that there is a unique ¢ such that g; is not
tranverse to x.
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The main result (I)

Theorem
This happens in every ﬂag manifold.

G F@) FO P@v U@v U@pp L@) p@7 Ug, a, ...

g=a®3(0) &P oa
acy

ar, := the centralizer of [ in a; ar, = ﬂ ker c.
aEANO
Proposition (Kostant, 2010)

The weight decomposition of ug w.r.t. the action of ar, coincides
with the decomposition into irreducible L-summands:

ug = @uN, P Cayp, [ux,ug]=upso.
NeP
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Photons

Ug = @uN, P Caj
NeP

In fact P = {a]a; }aextspan(a~e); indecomposable weights
P ~ (P + P) naturally identifies with © [via © — P | a +— &g, |

high

For every @ € ©, 1y, D ug” = go (w.r.t. the action of a)

. high
Consider z, € us®

Definition
Do = {exp(tzy) - PP} C FgP is the a-photon ; An a-photon
is & =g - P, for some g € G.

Lemma
®,, is homogenous under the action of SLa(R)s [the subgroup
tangent to (Ta, T_a, ha)] and is ~ to P*(R).
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Properties of Photons

Lemma

For all x € FJ®, so that T, Fg™ ~ ug and for all non zero v in

this tangent space

o There is ® such that x € ® andv € T,® < v € Lg -ugigh C
Uy Cug =~ T, FFP.

e In this case, there is a unique such ®.

Remark
Lo = ]P’(L@ . wa) C P(uy,) is closed
= the space of a-photons is closed.

5/9



Example(s)

G=0(p,p+k), A={a,...,ap}, choose © = {ai,...,ap_1}
Then
Fo=Fg"={(E1 C---CEy_1) | dimE; =i, E, 1 isotropic}.

Fix x = (El, N ,Ep—l)

For every ¢« < p — 1, there is a unique «;-photon through = :
®; = {(F1,...,Fp1) € Fo | Vj #i,Fj = Ej}

The isomorphism with the projective line is concrete:

P, — ]P)(Ei_:,_l/Ei_l) | (F1, . ,Fp_l) — Fi/Ei—l

For every isotropic p-plane FE, containing E, 1,

Oy ={(F,....Fp1)€Fo |Vj#p, Fj=E; F,.1 CE,}isa
a,-photon through z (and all a,-photon has this form)

®p1 = P(Ep/Ep—2) | (F1,..., Fp1) = Fpo1/Ep s
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Photon projection

Deﬁnqu>:{a:€f@|Ely€<I>,xmy}

Theorem

For every x in Vg, there is a unique y in ® such that y is not
transverse to x. Set pg(x) =y.

The map pe: Vo — ® has connected fibers.

Proof.
Up to G-action can assume = = Pg, Pg™ € ® and & = @,
Then one needs to have y = $o - Pg"™".

Let U = {exp(tx_qa)} C SLa(R)q4, one “sees” that
Vy:{ze}"@|zrhy}f:U><p;i(éa-y).
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Example(s) (continued)

(Er,...,Ep_1) € F1,..p—1 |and choose also an isotropic p-plane
E, containing E,_1 in order to treat the case i =p — 1 on an
equal footing|

; ={(F1,....Fpo1) € F1,.p1 |Vj#i,Fj = E;, F;C Ep}

Vo, ={(F1,...,Fp_1) € F1,..p—1 | Vj #14,F; M Ej}
P, - Vq;i — (I)i
(F1,....,Fpm1) = (..,Eis1,Bi 1 @ FrNEi1, B, )
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The main result (II)

Choose ) = Y co NawWa (na € N) so that b7 is defined on
Og C Fo x Fo ngpp Xf(%pp

Fix o € © and an a-photon ®.

Theorem
Let x,y € ®. For all z,w in Vg such that

po(2) = po(w) & {x,y}, then b"(z,y,z,w) = 1.

Let x,y € ®. For all z,w in Vg, with pe(z) # y and ps(w) # x,
then

Na

bV (z,y, z,w) = (2,9, pe(2), ps(w)]
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