The geometry of Flag manifolds I SRNI 45th School

Olivier Guichard

January 2025

The slides are available at https://irma.math.unistra.fr/~guichard/srni

The linear algebra exercise of the day

Let V be a real vector space of dimension 4n+2 (n is an integer) equipped with a quadratic form q of signature (2n + 1, 2n + 1). Let E and F be two maximal isotropic subspaces of V. This means that q(v) = 0 for every $v \in E \cup F$ and dim $E = \dim F = 2n + 1$.

There exists thus an element g in the orthogonal group O(V,q) such that g(E) = F (Witt's theorem).

Exercise

If E and F are transverse (that is, if $E \cap F = \{0\}$), then $g \notin SO(q)$ (that is, det(g) = -1).

Lie algebra setting

G a semisimple Lie group ; \mathfrak{g} its Lie algebra. For example, $G = \mathcal{O}(p, p+k)$ is the orthogonal group of a quadratic form q of signature (p, p+k) [p and k are positive integers]. For definiteness we will realize $\mathcal{O}(p, p+k)$ as a subgroup of $\mathrm{GL}_{2p+k}(\mathbf{R})$ and q will be the form

$$q(x_1, \dots, x_{2p+k}) = 2\sum_{i=1}^p (-1)^{i+p} x_i x_{2p+k+1-i} - \sum_{i=1}^k x_{p+i}^2.$$

K is a maximal compact subgroup of G ; $\mathfrak k$ its Lie algebra. One can take $K=G\cap \mathrm{O}(2p+k).$

A Cartan subspace \mathfrak{a} is a maximal (Abelian) subalgebra orthogonal to \mathfrak{k} with respect to the Killing form.

One can take \mathfrak{a} to be the space of matrices of the form $\operatorname{diag}(\lambda_1, \ldots, \lambda_p, 0, \ldots, 0, -\lambda_p, \ldots, -\lambda_1), \ (\lambda_1, \ldots, \lambda_p) \in \mathbf{R}^p$ Lie algebra setting (continued)

For $\beta \in \mathfrak{a}^*$, set $\mathfrak{g}_{\beta} = \{X \in \mathfrak{g} \mid [A, X] = \beta(A)X, \forall A \in \mathfrak{a}\}$ and $\Sigma = \{\beta \in \mathfrak{a}^* \smallsetminus \{0\} \mid \mathfrak{g}_{\beta} \neq 0\}$. The maps $\varepsilon_i \colon \mathfrak{a} \to \mathbb{R}$ [*i* varies from 1 to *p*] defined by $\varepsilon_i(\operatorname{diag}(\lambda_1, \dots, \lambda_p, 0, \dots, 0, -\lambda_p, \dots, -\lambda_1)) = \lambda_i$ are linear and form a basis of \mathfrak{a}^* . the roots are the $\pm \varepsilon_i \pm \varepsilon_j$ (for i < j) and the $\pm \varepsilon_i$.

Choosing $<_{\mathfrak{a}^*}$ a total linear ordering (the lexicographic order), one defines $\Sigma^+ = \{\alpha \in \Sigma \mid 0 <_{\mathfrak{a}^*} \alpha\}$ the positive roots. Here $\varepsilon_i \pm \varepsilon_j, i < j$ and $+\varepsilon_i$.

Let α belongs to Σ^+ , when there are β, γ in Σ^+ such that $\alpha = \beta + \gamma$, one has $\mathfrak{g}_{\alpha} = [\mathfrak{g}_{\beta}, \mathfrak{g}_{\gamma}]$ and the root α is called *decomposable*, it is called *simple* otherwise. The simple roots are $\alpha_i = \varepsilon_i - \varepsilon_{i+1}$ and $\alpha_p = \varepsilon_p$.

Denote $\Delta \subset \Sigma^+$ the set of simple roots. Every positive root decomposes $\beta = \sum_{\Delta} n_{\alpha} \alpha$ where $n_{\alpha} \ge 0$.

The Weyl group

It is the automorphism group W of $\Sigma \subset \mathfrak{a}^*$. It is the group of signed permutation matrices, isomorphic to $\{\pm 1\}^p \rtimes S_p$. For each α in Σ there is a unique hyperplane reflection contained in W such that $s_{\alpha}(\alpha) = -\alpha$. $s_i = s_{\alpha_i}, s_p$ changes the sign of the last coordinate and s_i exchanges the coordinates in the indices i and i + 1.

W is generated by $\{s_{\alpha}\}_{\alpha \in \Delta}$. There is a unique element w_{\max} of W sending Σ^+ to $\Sigma^- = -\Sigma^+ = \Sigma \smallsetminus \Sigma^+$. It is the longest length element. $w_{\max} = -$ Id.

The map $\iota: \alpha \mapsto -w_{\max}(\alpha)$ sends Σ^+ to Σ^+ and Δ to Δ . It is called the *opposition involution*. The opposition involution is trivial.

W is isomorphic to $N_K(\mathfrak{a})/Z_K(\mathfrak{a})$. For w in W, we will sometimes denote \dot{w} a representative of w in $N_K(\mathfrak{a})$.

\mathfrak{sl}_2 -triples, fundamental weights

Those are triples (x, y, h) in \mathfrak{g} such that [x, y] = h, [h, x] = 2xFor example $x = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ in $\mathfrak{sl}_2(\mathbf{R})$.

For all α in Δ we will choose an \mathfrak{sl}_2 -triple $(x_\alpha, x_{-\alpha}, h_\alpha)$ with $x_{\pm \alpha} \in \mathfrak{g}_{\pm \alpha}$. If i < p, one can set $x_i = E_{i,i+1} + E_{2p+k-i,2p+k+1-i}$ and $x_{-i} = {}^t x_i$, and $x_p = E_{p,p+1} + E_{p+1,p+k+1}$, $x_{-p} = {}^t x_p$.

The element h_{α} does not depends on the choices. The family $\{h_{\alpha}\}_{\alpha\in\Delta}$ is a basis of \mathfrak{a} . The dual basis $\{\omega_{\alpha}\}_{\alpha\in\Delta}$ of \mathfrak{a}^* is called the *fundamental weights*. $\omega_i = \varepsilon_1 + \cdots + \varepsilon_i$.

Let exp: $\mathfrak{g} \to G$ be the exponential. For every α , one can choose $\dot{s}_{\alpha} = \exp(\pi/2(x_{\alpha} - x_{-\alpha}))$ to represent in $N_K(\mathfrak{a})$ the element s_{α} .

Parabolic subgroups, flag manifolds

- The subspace $\mathfrak{u}_{\Delta} = \sum_{\beta \in \Sigma^+} \mathfrak{g}_{\beta}$ is a nilpotent subalgebra generated by $\bigcup_{\alpha \in \Delta} \mathfrak{g}_{\alpha}$. Similarly $\mathfrak{u}_{\Delta}^{opp} = \sum_{\beta \in \Sigma^+} \mathfrak{g}_{-\beta}$.
- For every $\Theta \subset \Delta$ we let \mathfrak{u}_{Θ} to be the ideal of \mathfrak{u}_{Δ} generated by $\bigcup_{\alpha \in \Theta} \mathfrak{g}_{\alpha}$. One has $\mathfrak{u}_{\Theta} = \sum_{\alpha \in \Sigma^+ \smallsetminus \operatorname{Span}(\Delta \smallsetminus \Theta)} \mathfrak{g}_{\alpha}$. Similarly set $\mathfrak{u}_{\Theta}^{\operatorname{opp}} = \sum_{\alpha \in \Sigma^+ \smallsetminus \operatorname{Span}(\Delta \smallsetminus \Theta)} \mathfrak{g}_{-\alpha}$.
- The standard parabolic subgroups are $P_{\Theta} = N_G(\mathfrak{u}_{\Theta}),$ $P_{\Theta}^{\mathrm{opp}} = N_G(\mathfrak{u}_{\Theta}^{\mathrm{opp}}).$
- The unipotent radical of P_{Θ} (resp. P_{Θ}^{opp}) is $U_{\Theta} = \exp(\mathfrak{u}_{\Theta})$ (resp. $U_{\Theta}^{\text{opp}} = \exp(\mathfrak{u}_{\Theta}^{\text{opp}})$).
- $L_{\Theta} = P_{\Theta} \cap P_{\Theta}^{\text{opp}}$ is called a *Levi factor*. One has $P_{\Theta} = U_{\Theta} \rtimes L_{\Theta}$.
- \mathcal{F}_{Θ} is the space of parabolic groups conjugated to P_{Θ} ; $\mathcal{F}_{\Theta}^{\text{opp}}$ is the space of parabolic groups conjugated to P_{Θ}^{opp} . As P_{Θ}^{opp} is conjugated to P_{Θ} (by \dot{w}_{max}), $\mathcal{F}_{\iota(\Theta)} = \mathcal{F}_{\Theta}^{\text{opp}}$.
- As $P_{\Theta} = N_G(P_{\Theta}), \ \mathcal{F}_{\Theta} \simeq G/P_{\Theta}.$

Parabolic subgroups (continued)

For all $i \leq p$, P_i (resp. P_i^{opp}) is the stabilizer of the (isotropic) *i*-dimensional space generated by the *i* first (resp. last) basis vectors.

 $\mathcal{F}_i = \mathcal{F}_i^{\mathrm{opp}}$ is naturally isomorphic to the space of isotropic i-planes.

More generally, $\mathcal{F}_{i_1 < \cdots < i_{\ell}}$ is the space of partial flags $(E_1 \subset \cdots \subset E_{\ell})$ with dim $E_m = i_m$ and E_{ℓ} isotropic.

A pair (P, Q) of parabolic subgroups is *transverse* if it is conjugated to $(P_{\Theta}, P_{\Theta}^{\text{opp}})$. This is equivalent to $P \cap Q$ being reductive.

Two isotropic *i*-dimensional space E and F in \mathcal{F}_i are transverse if and only if they are ... transverse! that is $E^{\perp_q} \cap F = 0$.

Lemma

The map $\mathfrak{u}_{\Theta}^{\mathrm{opp}} \to \mathcal{F}_{\Theta} \mid X \mapsto \exp(X) \cdot P_{\Theta}$ is one-to-one onto the space of elements transverse to $P_{\Theta}^{\mathrm{opp}}$

Embeddings into projective space

Let $\eta = \sum_{\Delta} k_{\alpha} \omega_{\alpha}$ be a dominant weight and let $\tau : G \to \operatorname{GL}(V)$ be the associated irreducible representation. If $\eta = \omega_i$ take $V = \bigwedge^i \mathbf{R}^{2p+k}$.

We denote by V_{η} the eigenspace of \mathfrak{a} (with respect to τ) relative to the eigenvalue η . This is a line in V. Denote by V_{η}° the \mathfrak{a} -invariant supplementary hyperplane.

Lemma

Let $\Theta = \{ \alpha \in \Delta \mid k_{\alpha} = 0 \}$. Then the stabilizer of V_{η} in G is P_{Θ} , the stabilizer of V_{η}° is P_{Θ}^{opp} .

We can therefore build (one-to-one) maps

$$\begin{split} i_{\Theta} \colon \mathcal{F}_{\Theta} &\longrightarrow \mathbb{P}(V) \mid g \cdot P_{\Theta} \longmapsto \tau(g) \cdot V_{\eta} \\ i_{\Theta}^{\mathrm{opp}} \colon \mathcal{F}_{\Theta}^{\mathrm{opp}} \longrightarrow \mathbb{P}^{*}(V) \mid g \cdot P_{\Theta}^{\mathrm{opp}} \longmapsto \tau(g) \cdot V_{\eta}^{\circ} \end{split}$$

Lemma

 $(P,Q) \in \mathcal{F}_{\Theta} \times \mathcal{F}_{\Theta}^{\mathrm{opp}}$ are transverse if and only if $(i_{\Theta}(P), i_{\Theta}^{\mathrm{opp}}(Q)) \in \mathbb{P}(V) \times \mathbb{P}^{*}(V)$ are transverse.

The geometry of Flag manifolds II SRNI 45th School

Olivier Guichard

January 2025

The slides are still available at https://irma.math.unistra.fr/~guichard/srni

The linear algebra exercise of the day

Let $V = \text{Sym}^{d-1} \mathbb{R}^2 \simeq \mathbb{R}_{d-1}[X, Y]$ be the space of homogenous polynomials in 2 variables.

V has a natural basis
$$e_i = Y^{i-1}X^{d-i}$$
 $(i = 1, \dots, d)$.

V and V^{*} bear a natural action of $SL_2(\mathbf{R})$.

Exercise

$$t \mapsto \left\langle \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \cdot e_1^*, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot e_1 \right\rangle$$
 is a non zero multiple of $t \mapsto t^d$.

The cross-ratio on the projective line, the collar lemma

The cross-ratio on the projective line $\mathbb{P}^1(\mathbf{R}) = \mathbf{R} \cup \{\infty\}$ is defined by the formula $[x, y, X, Y] = \frac{X - x}{X - y} \frac{Y - y}{Y - x}$ The normalization is so that $[\infty, 0, 1, t] = t$. This means that [x, y, X, Y] belongs to [0, 1] if Y is between y and X, $[x, y, X, Y] \ge 1$ if Y is between X and x, etc.

Let M be a complete hyperbolic surface. Let α , β be intersecting geodesics on M and $\ell(\alpha)$, $\ell(\beta)$ their lengths.

Theorem (Collar lemma)

$$\frac{1}{\exp(\ell(\alpha))} + \frac{1}{\exp(\ell(\beta))} \le 1.$$

Collar lemma (the proof)

[Two nice drawings should go here]

Let A and B in $SL_2(\mathbf{R})$ be the holonomies of α and β respectively. Those are diagonalizable and thus admit attracting a^+, b^+ and repelling a^-, b^- fixed points in $\mathbb{P}^1(\mathbf{R})$.

The relation between the length and the cross-ratio is the following $\exp(\ell(\alpha)) = [a^+, a^-, x, A(x)]$

Magical relation $[a^-, b^+, a^+, A(b^+)] + [a^-, a^+, b^+, A(b^+)] = 1.$

One has $[a^-, a^+, b^+, A(b^+)] = \exp(-\ell(\beta)).$

$$\begin{split} [a^-, b^+, a^+, A(b^+)] &= [a^-, b^-, a^+, A(b^+)][b^-, b^+, a^+, A(b^+)] \\ &\geq [b^-, b^+, a^+, B(a^+)][b^-, b^+, B(a^+), A(b^+)] \\ &\geq [b^-, b^+, a^+, B(a^+)] = \exp(-\ell(\beta)) \end{split}$$

Projective cross-ratios

V a real vector space On $\mathcal{O}_V = \{(x, y, X, Y) \in \mathbb{P}(V)^2 \times \mathbb{P}^*(V)^2 \mid X \pitchfork y \text{ and } Y \pitchfork x\},\$ we define

$$b_V(x, y, X, Y) = \frac{\langle \dot{X}, \dot{x} \rangle}{\langle \dot{X}, \dot{y} \rangle} \frac{\langle \dot{Y}, \dot{y} \rangle}{\langle \dot{Y}, \dot{x} \rangle}$$

Cocycle relations $b_V(x, y, X, Y)b_V(y, z, X, Y) = b_V(x, z, X, Y)$

For a loxodromic element $A \in \operatorname{GL}(V)$, $b_V(a^+, a^-, X, A \cdot X) = \lambda_{\max}(A) / \lambda_{\min}(A)$

Symplectic interpretation

Let ω^V be the natural symplectic form on $V \times V^* = T^*V$. The map $\mu \colon V \times V^* \to \mathbf{R} \mid (v, \varphi) \mapsto \langle \varphi, v \rangle$ is a moment for the \mathbf{R}^* -action $\lambda \cdot (v, \varphi) = (\lambda v, \lambda^{-1} \varphi)$.

The symplectic reduction $\mu^{-1}(1)/\mathbf{R}^*$ carries a symplectic form ω and is isomorphic to $\mathcal{U}_V = \{(x, X) \in \mathbb{P}(V) \times \mathbb{P}^*(V) \mid X \pitchfork x\}.$

Proposition

Let $f: [0,1]^2 \to \mathcal{U}_V$ be a C^1 map such that, $\forall t \in [0,1]$, $f(0,t) = (x,*), f(1,t) = (y,*) \text{ and } \forall s \in [0,1], f(s,0) = (*,X),$ f(s,1) = (*,Y), then

$$b_V(x, y, X, Y) = \exp\left(\int_{[0,1]^2} f^*\omega\right)$$

Constructing cross-ratio on flag manifolds

Let G, Θ, P_{Θ} , etc. as in lecture 1. Suppose that $\tau: G \to \operatorname{GL}(V)$ is a (continuous) representation such that there exists a one-to-one τ -equivariant map

$$i_{\Theta} \colon \mathcal{F}_{\Theta} \longrightarrow \mathbb{P}(V)$$

Proposition

Then there is $i_{\Theta}^{\text{opp}} \colon \mathcal{F}_{\Theta}^{\text{opp}} \longrightarrow \mathbb{P}^*(V)$ (one-to-one, equivariant) with the property that $P \pitchfork Q \Rightarrow i_{\Theta}(P) \pitchfork i_{\Theta}^{\text{opp}}(Q)$.

Define

$$\mathcal{O}_{\Theta} = \left\{ (x, y, X, Y) \in (\mathcal{F}_{\Theta})^2 \times (\mathcal{F}_{\Theta}^{\mathrm{opp}})^2 \mid X \pitchfork y \text{ and } Y \pitchfork x \right\}$$
$$b_{\tau}(x, y, X, Y) = b_V \big(i_{\Theta}(x), i_{\Theta}(y), i_{\Theta}^{\mathrm{opp}}(X), i_{\Theta}^{\mathrm{opp}}(Y) \big).$$

Remembering some decompositions

$$\begin{split} \mathfrak{g} &= \mathfrak{a} \oplus \mathfrak{z}_{\mathfrak{k}}(\mathfrak{a}) \oplus \bigoplus_{\alpha \in \Sigma} \mathfrak{g}_{\alpha} \\ \mathfrak{p}_{\Delta} &= \mathfrak{a} \oplus \mathfrak{z}_{\mathfrak{k}}(\mathfrak{a}) \oplus \left(\bigoplus_{\alpha \in \Sigma^{+}} \mathfrak{g}_{\alpha} \right) \\ \mathfrak{p}_{\Theta} &= \left(\bigoplus_{\alpha \in \Sigma^{+} \cap \operatorname{Span}(\Delta \smallsetminus \Theta)} \mathfrak{g}_{-\alpha} \right) \oplus \left(\mathfrak{a} \oplus \mathfrak{z}_{\mathfrak{k}}(\mathfrak{a}) \oplus \bigoplus_{\alpha \in \Sigma^{+}} \mathfrak{g}_{\alpha} \right) \end{split}$$

Let $\tau \colon G \to \operatorname{GL}(V), i_{\Theta} \colon \mathcal{F}_{\Theta} \to \mathbb{P}(V)$ as above.

The line $L = i_{\Theta}(P_{\Theta})$ is P_{Θ} -invariant $\Rightarrow L$ is an eigenline for the action of \mathfrak{a} , is cancelled by \mathfrak{u}_{Δ} and also by $\bigcup_{\alpha \in \Theta} \mathfrak{g}_{-\alpha}$.

The subspace $W = \langle \tau(G) \cdot L \rangle$ is an irreducible representation of G with highest weight space L. Can (and will) assume V = W.

Continuing the analysis of V

 $V = \bigoplus_{\kappa \in P(V)} V_{\kappa}, P(V) \subset \sum_{\Delta} \mathbf{Z} \omega_{\alpha}$, denote η the weight such that $L = V_{\eta}$. Then $\eta \in \sum_{\Delta} \mathbf{N} \omega_{\alpha}$ and uniquely determines V.

$$V_{\eta}$$
 invariant by $\mathfrak{g}_{-\alpha} \Leftrightarrow \eta(h_{\alpha}) = 0.$

One then get $\eta \in \sum \alpha \in \Theta \mathbf{N}^* \omega_{\alpha}$

The hyperplane $V_{\eta}^{\circ} = \sum_{\kappa \in P(V) \setminus \{\eta\}} V_{\kappa}$ is tranverse to V_{η} and is P_{Θ}^{opp} -stable.

The maps

$$i_{\Theta} \colon \mathcal{F}_{\Theta} \longrightarrow \mathbb{P}(V) \mid g \cdot P_{\Theta} \longmapsto \tau(g) \cdot V_{\eta}$$
$$i_{\Theta}^{\mathrm{opp}} \colon \mathcal{F}_{\Theta}^{\mathrm{opp}} \longrightarrow \mathbb{P}^{*}(V) \mid g \cdot P_{\Theta}^{\mathrm{opp}} \longmapsto \tau(g) \cdot V_{\eta}^{\circ}$$

satisfy all the wanted properties.

Denote $b^{\eta}(x, y, X, Y) = b_V (i_{\Theta}(x), i_{\Theta}(y), i_{\Theta}^{\text{opp}}(X), i_{\Theta}^{\text{opp}}(Y))$

Naturality properties

Lemma One has $b^{\eta_1+\eta_2} = b^{\eta_1}b^{\eta_2}, \ b^{k\eta} = (b^{\eta})^k.$

Proof: The map $\mathbb{P}(V) \times \mathbb{P}(W) \longrightarrow \mathbb{P}(V \otimes W)$ sends $b_V b_W$ to $b_{V \otimes W}$

Symplectic interpretation (bis)

There is a symplectic form ω^{η} on $\mathcal{U}_{\Theta} \subset \mathcal{F}_{\Theta} \times \mathcal{F}_{\Theta}^{\mathrm{opp}}$ such that

Proposition

Let $f: [0,1]^2 \to \mathcal{U}_{\Theta}$ be a C^1 map such that, $\forall t \in [0,1]$, $f(0,t) = (x,*), f(1,t) = (y,*) \text{ and } \forall s \in [0,1], f(s,0) = (*,X),$ f(s,1) = (*,Y), then

$$b^{\eta}(x, y, X, Y) = \exp\left(\int_{[0,1]^2} f^* \omega^{\eta}\right)$$

The tangent space at a point (x, X) to \mathcal{U}_{Θ} identifies with $\mathfrak{u}_{\Theta}^{\mathrm{opp}} \times \mathfrak{u}_{\Theta}$.

The formula is

$$\omega^{\eta}((v_1, v_2), (w_1, w_2)) = \eta([v_1, w_2] - [v_2, w_1]).$$

The geometry of Flag manifolds III SRNI 45th School

Olivier Guichard

January 2025

The slides are again available at https://irma.math.unistra.fr/~guichard/srni

The linear algebra exercise of the day

$$\begin{pmatrix} 1 & & & & \\ & \ddots & & tF \\ & & 1 & & \\ & & & 1 & \\ & & & A & & \ddots \\ & & & & & 1 \end{pmatrix}$$

 $t \in \mathbf{R}$, where $A \in M_{\ell,k}(\mathbf{R})$ and where $F \in M_{k,\ell}(\mathbf{R})$ has rank one Exercise

There is a unique $t \in \mathbf{R}$ such that this matrix is singular.

Geometric interpretation:

The first k columns represent an k-plane x, the last ℓ columns represent a ℓ -plane y_t ;

The conclusion says that there is a unique t such that y_t is not tranverse to x.

The main result (I)

Theorem This happens in every flag manifold. $G, \mathcal{F}_{\Theta}, \mathcal{F}_{\Theta}^{\mathrm{opp}}, P_{\Theta}, P_{\Theta}^{\mathrm{opp}}, U_{\Theta}, U_{\Theta}^{\mathrm{opp}}, L_{\Theta}, \mathfrak{p}_{\Theta}, \mathfrak{u}_{\Theta}, \mathfrak{a}, \dots$

$$\mathfrak{g}=\mathfrak{a}\oplus\mathfrak{z}_\mathfrak{k}(\mathfrak{a})\oplus\bigoplus_{lpha\in\Sigma}\mathfrak{g}_lpha$$

 $\mathfrak{a}_L :=$ the centralizer of \mathfrak{l} in \mathfrak{a} ; $\mathfrak{a}_L = \bigcap_{\alpha \in \Delta \smallsetminus \Theta} \ker \alpha$.

Proposition (Kostant, 2010)

The weight decomposition of \mathfrak{u}_{Θ} w.r.t. the action of \mathfrak{a}_L coincides with the decomposition into irreducible L-summands:

$$\mathfrak{u}_{\Theta} = \bigoplus_{\aleph \in P} \mathfrak{u}_{\aleph}, \quad P \subset \mathfrak{a}_L^*, \quad [\mathfrak{u}_{\aleph}, \mathfrak{u}_{\beth}] = \mathfrak{u}_{\aleph+\beth}.$$

Photons

$$\mathfrak{u}_{\Theta} = \bigoplus_{\aleph \in P} \mathfrak{u}_{\aleph}, \quad P \subset \mathfrak{a}_L^*$$

In fact $P = \{\alpha|_{\mathfrak{a}_L}\}_{\alpha \in \Sigma^+ \setminus \text{Span}(\Delta \setminus \Theta)}$; indecomposable weights $P \setminus (P + P)$ naturally identifies with Θ [via $\Theta \to P \mid \alpha \mapsto \alpha|_{\mathfrak{a}_L}$] For every $\alpha \in \Theta$, $\mathfrak{u}_\alpha \supset \mathfrak{u}_\alpha^{\text{high}} = \mathfrak{g}_\alpha$ (w.r.t. the action of \mathfrak{a}) Consider $x_\alpha \in \mathfrak{u}_\alpha^{\text{high}}$ Definition $\Phi_\alpha := \{\exp(tx_\alpha) \cdot P_\Theta^{\text{opp}}\} \subset \mathcal{F}_\Theta^{\text{opp}}$ is the α -photon ; An α -photon is $\Phi = q \cdot \Phi_\alpha$ for some $q \in G$.

Lemma

 Φ_{α} is homogenous under the action of $\mathrm{SL}_2(\mathbf{R})_{\alpha}$ [the subgroup tangent to $\langle x_{\alpha}, x_{-\alpha}, h_{\alpha} \rangle$] and is \simeq to $\mathbb{P}^1(\mathbf{R})$.

Properties of Photons

Lemma

For all $x \in \mathcal{F}_{\Theta}^{\mathrm{opp}}$, so that $T_x \mathcal{F}_{\Theta}^{\mathrm{opp}} \simeq \mathfrak{u}_{\Theta}$ and for all non zero v in this tangent space

- There is Φ such that $x \in \Phi$ and $v \in T_x \Phi \iff v \in L_{\Theta} \cdot \mathfrak{u}_{\alpha}^{high} \subset \mathfrak{u}_{\alpha} \subset \mathfrak{u}_{\Theta} \simeq T_x \mathcal{F}_{\Theta}^{opp}$.
- In this case, there is a unique such Φ .

Remark

 $Z_{\alpha} = \mathbb{P}(L_{\Theta} \cdot x_{\alpha}) \subset \mathbb{P}(\mathfrak{u}_{\alpha}) \text{ is closed}$ $\Rightarrow \text{ the space of } \alpha \text{-photons is closed.}$

Example(s)

 $G = O(p, p + k), \Delta = \{\alpha_1, \dots, \alpha_p\}, \text{ choose } \Theta = \{\alpha_1, \dots, \alpha_{p-1}\}$ Then $\mathcal{F}_{\Theta} = \mathcal{F}_{\Theta}^{\text{opp}} = \{(E_1 \subset \dots \subset E_{p-1}) \mid \dim E_i = i, E_{p-1} \text{ isotropic}\}.$ Fix $x = (E_1, \dots, E_{p-1})$

For every $i , there is a unique <math>\alpha_i$ -photon through $x : \Phi_i = \{(F_1, \dots, F_{p-1}) \in \mathcal{F}_{\Theta} \mid \forall j \neq i, F_j = E_j\}$ The isomorphism with the projective line is concrete: $\Phi_i \to \mathbb{P}(E_{i+1}/E_{i-1}) \mid (F_1, \dots, F_{p-1}) \mapsto F_i/E_{i-1}$

For every isotropic *p*-plane E_p containing E_{p-1} , $\Phi_{p-1} = \{(F_1, \ldots, F_{p-1}) \in \mathcal{F}_{\Theta} \mid \forall j \neq p, F_j = E_j, F_{p-1} \subset E_p\}$ is a α_p -photon through x (and all α_p -photon has this form) $\Phi_{p-1} \to \mathbb{P}(E_p/E_{p-2}) \mid (F_1, \ldots, F_{p-1}) \mapsto F_{p-1}/E_{p-2}$

Photon projection

Define
$$\mathcal{V}_{\Phi} = \{ x \in \mathcal{F}_{\Theta} \mid \exists y \in \Phi, x \pitchfork y \}$$

Theorem

For every x in \mathcal{V}_{Φ} , there is a unique y in Φ such that y is not transverse to x. Set $p_{\Phi}(x) = y$. The map $p_{\Phi} \colon \mathcal{V}_{\Phi} \to \Phi$ has connected fibers.

Proof.

Up to G-action can assume $x = P_{\Theta}, P_{\Theta}^{\text{opp}} \in \Phi$ and $\Phi = \Phi_{\alpha}$. Then one needs to have $y = \dot{s}_{\alpha} \cdot P_{\Theta}^{\text{opp}}$.

Let
$$U = \{\exp(tx_{-\alpha})\} \subset \operatorname{SL}_2(\mathbf{R})_{\alpha}$$
, one "sees" that
 $\mathcal{V}_y = \{z \in \mathcal{F}_{\Theta} \mid z \pitchfork y\} \simeq U \times p_{\Phi_{\alpha}}^{-1}(\dot{s}_{\alpha} \cdot y).$

Example(s) (continued)

 $(E_1, \ldots, E_{p-1}) \in \mathcal{F}_{1,\ldots,p-1}$ [and choose also an isotropic *p*-plane E_p containing E_{p-1} in order to treat the case i = p - 1 on an equal footing]

$$\Phi_{i} = \left\{ (F_{1}, \dots, F_{p-1}) \in \mathcal{F}_{1,\dots,p-1} \mid \forall j \neq i, F_{j} = E_{j}, F_{i} \subset E_{p} \right\}$$
$$\mathcal{V}_{\Phi_{i}} = \left\{ (F_{1}, \dots, F_{p-1}) \in \mathcal{F}_{1,\dots,p-1} \mid \forall j \neq i, F_{j} \pitchfork E_{j} \right\}$$
$$p_{\Phi_{i}} \colon \mathcal{V}_{\Phi_{i}} \to \Phi_{i}$$
$$(F_{1}, \dots, F_{p-1}) \mapsto (\dots, E_{i-1}, E_{i-1} \oplus F_{i}^{\perp} \cap E_{i+1}, E_{i+1}, \dots)$$

The main result (II)

Choose $\eta = \sum_{\alpha \in \Theta} n_{\alpha} \omega_{\alpha} \ (n_{\alpha} \in \mathbf{N})$ so that b^{η} is defined on $\mathcal{O}_{\Theta} \subset \mathcal{F}_{\Theta} \times \mathcal{F}_{\Theta} \times \mathcal{F}_{\Theta}^{\mathrm{opp}} \times \mathcal{F}_{\Theta}^{\mathrm{opp}}$

Fix $\alpha \in \Theta$ and an α -photon Φ .

Theorem Let $x, y \in \Phi$. For all z, w in \mathcal{V}_{Φ} such that $p_{\Phi}(z) = p_{\Phi}(w) \notin \{x, y\}$, then $b^{\eta}(x, y, z, w) = 1$.

Let $x, y \in \Phi$. For all z, w in \mathcal{V}_{Φ} , with $p_{\Phi}(z) \neq y$ and $p_{\Phi}(w) \neq x$, then

$$b^{\eta}(x, y, z, w) = [x, y, p_{\Phi}(z), p_{\Phi}(w)]^{n_{\alpha}}$$