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Aims and scope

▶ Three lectures based on joint work with various coauthors, in particular Li
Guo (Rutgers Univ., Newark) and Bin Zhang (Sichuan Univ., Chengdu),

▶ that aim to give a mathematical perspective on certain aspects of
renormalisation.

Rough definition of renormalisation

Renormalisation comprises a set of techniques derived from quantum field
theory, which are used to deal with infinities arising when calculating quantities
by modifying their values to compensate for discrepancies.

Disclaimer

These lectures only provide a prolegomenon in that we do not claim to explain
renormalisation in its full breath. In the language of perturbative quantum field
theory, we are only dealing with a finite number of loops.
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Table of contents

1. Exposition: from regularisation to renormalisation
1.1 Various regularisation techniques (cut-off, dimensional, zeta and heat-kernel

regularisation) underlying renormalisation methods.
1.2 Their usage in number theory, quantum field theory, microlocal analysis and

index theory.

2. Development: algebraic and analytic methods for renormalisation
2.1 From simple to multiple sums or integrals: sub-divergences
2.2 Coombining coproducts with dimensional/ regularisation
2.3 Analytic regularisation à la Speer and meromorphic functions

3. Recapitulation: how locality comes to the rescue. Applications.
3.1 The concept of locality as a leading thread
3.2 Meromorphic functions in several variables with linear poles
3.3 How locality comes into play when ”evaluating” them at poles.

A useful reference

”Mathematical Reflections on Locality” L. Guo, S. Paycha, B. Zhang,
Jahresbericht der Deutschen Mathematiker-Vereinigung (2023).
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2.3 Analytic regularisation à la Speer and meromorphic functions

3. Recapitulation: how locality comes to the rescue. Applications.
3.1 The concept of locality as a leading thread
3.2 Meromorphic functions in several variables with linear poles
3.3 How locality comes into play when ”evaluating” them at poles.

A useful reference

”Mathematical Reflections on Locality” L. Guo, S. Paycha, B. Zhang,
Jahresbericht der Deutschen Mathematiker-Vereinigung (2023).

S.Paycha Potsdam

Renormalisation 3 of 13



Table of contents

1. Exposition: from regularisation to renormalisation
1.1 Various regularisation techniques (cut-off, dimensional, zeta and heat-kernel

regularisation) underlying renormalisation methods.
1.2 Their usage in number theory, quantum field theory, microlocal analysis and

index theory.

2. Development: algebraic and analytic methods for renormalisation
2.1 From simple to multiple sums or integrals: sub-divergences
2.2 Coombining coproducts with dimensional/ regularisation
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Lecture 1

Exposition: from regularisation to renormalisation
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Brain teaser

How can we ”extract” a finite part from

▶ the harmonic sum
∑n

k=1
1
k
= 1 + 1

2
+ 1

3
+ · · ·+ 1

n
+ · · · ?

▶ how does this divergent sum relate to the corresponding integral
∫ n

1
1
x
dx?

Discrete sum versus integral

They relate via the Euler-Mascheroni constant = Hadamard’s finite part

γ := lim
n→∞

(
n∑

k=1

1

k
− log n

)
= lim

n→∞

(
n∑

k=1

1

k
−
∫ n

1

1

x
dx

)
called cut-off sum in QFT

This follows from the Euler-Maclaurin formula for a continuous function f on [1,+∞[

n∑
k=1

f (k) =

∫ n

1
f (x) dx +

f (n) + f (1)

2
+

m∑
ℓ=2

Bℓ

ℓ!
[f (ℓ−1)]n1 + Rn

m(f ). (1)

Here the Bℓ’s are the Bernoulli numbers. Note that for f (x) = 1
x
we have

f (ℓ−1)(x) = (−1)ℓ−1 (ℓ− 1)! x−ℓ. Here, Rn
m(f ) =

(−1)m+1

m!

∫ n
1 f (m)(x)Pm(x − [x]) dx .
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Brain teaser ctn’d: Bernhard Riemann enters the scene

Riemann zeta function

The function (which we would like to evaluate at zero)

z 7−→
∞∑
n=1

1

n1+z

is well-defined and holomorphic on the upper half plane ℜ(z) > 0. It uniquely
extends to a meromorphic function on C:

ζ(1 + •) : z 7−→ −
∞∑
n=1

1

n1+z

(
−
∞∑
n=1

is called canonical sum

)

which has a simple pole at zero with Resz=0ζ(1 + •) = 1.

Hadamard (and Euler) versus Riemann (and Riesz)

γ = lim
z→0

(
ζ(1 + z)−

1

z

)
called minimal subtraction scheme in QFT.
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Sums and integrals of polyhomogeneous symbols 1

Polyhomogeneous (or classical) symbols

For U ⊂ Rn open, a function (x , ξ) 7→ σ(x , ξ) in C∞(T ∗U) is called a
polyhomogeneous symbol of order α if it has the following asymptotic
behaviour as ξ goes to infinity:

σ(x , ξ) =
N∑
j=0

σα−j(x , ξ) + σ(N)(x , ξ) ∀ (x , ξ) ∈ T ∗U. (2)

Here, σα−j is (quasi-) positively homogeneous of order α− j , σ(N) is a symbol

of order r := ℜ(α)−N − 1, namely ∂µ
x ∂

ν
ξ σ(x , ξ) is O(1 + |ξ|)r−|ν| uniformly in

ξ and in x on compact subsets of U. We then write σ(x , ξ) ∼
∑∞

j=0 σα−j(x , ξ).

Examples: symbols constant in x

(n = 1) σ(x , ξ) = χ(ξ) 1
ξ
of order−1; (n ≥ 1) σ(x , ξ) = 1

|ξ|2+1
of order−2.
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Sums and integrals of polyhomogeneous symbols 2

Regularisation: holomorphic families of classical symbols

R : σ 7−→ σ(z) of orderα(z) = α− q z , α(0) = α = ord(σ).

Cut-off sums and integrals (here of symbols constant in x)

The function (which we would like to evaluate at zero)

z 7−→
∫ ∞

0

σ(z)(ξ) dξ and z 7−→
∞∑
n=0

σ(z)(n)

is well-defined and holomorphic on the upper half plane ℜ(α(z)) > 0. It
uniquely extends to a meromorphic function on C:

I(σ) : z 7−→ −
∫
Rn

σ(z)(ξ) dξ and (here n = 1) S(σ) : z 7−→ −
∞∑
n=0

σ(z)(n)

which involve the canonical integral −
∫
Rn and the canonical sum −

∑∞
0 .
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The Wodzicki residue of a polyhomogeneous symbol

The residue of a symbol

res(σ) = (2π)−n

∫
U

∫
|ξ|=1

σ−n(x , ξ) dSξ dx .

The complex versus the Wodzicki residue

The mermorphic functions I(σ) and S(σ) on C have a simple pole at z = 0:

Resz=0 −
∞∑
0

σ(z) = Resz=0 −
∫
Rn

σ(z) = q res(σ).

Here α(z) = α(0)− q z.

Two emblematic examples (q=1)

(n = 1) σ(x , ξ) = χ(ξ) 1
ξ
=⇒ res(σ) = 1 =⇒ Resz=0 Resz=0 ζ(1 + z) = −

∑∞
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A fundamental tool: the Wodzicki residue

▶ M an n-dimensional (Riemannian) smooth closed manifold;

▶ π : E → M a finite rank k vector bundle;

▶ C∞(M,E) the space of smooth sections of E ;

▶ Ψcl(M,E) the algebra of polyhomogeneous (or classical) pseudodifferential
operators acting on C∞(M,E) whose local symbol σ ∈ C∞(T∗U,Rk ) on a
coordinate chart U is polyhomogeneous.

▶ we write Ψcl(M) if E = M × C.

The Wodzicki residue density

For A ∈ Ψcl(M,E), the residue density at a point x ∈ M reads:

ωres
A (x) := (2π)−n

(∫
|ξ|=1

trx (σ−n(A) (x , ξ)) dSξ

)
dx1 ∧ · · · ∧ dxn,

with dSξ :=
∑n

j=1(−1)j+1ξj dξ1 ∧ · · · ∧ d̂ξj ∧ · · · dξn .
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Characterisation and locality of the Wodzicki residue

Characterisation of the Wodzicki residue

use The Wodzicki residue is the only (modulo a multiplicative factor) trace on
Ψcl(M,E) −→ C i.e., the only linear form L : Ψcl(M,E) −→ C such that

L([A,B]) = 0, ∀A,B ∈ Ψcl(M,E).

Consequently,

No go theorem

The ordinary trace Tr : Ψcl<−n(M,E) → C on operators of order with real part
< −n does not linearly extend to a trace on Ψcl(M,E).

Locality

▶ Whereas A is a priori only pseudo-local (it preserves the singular support
but not necessarily the support),

▶ the residue Res(A) =
∫
M
ωres
A (x) is local as the integral of a differential

form.
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Back to the ζ-function: the regularised trace as a Wodzicki residue

Regularisation: R : Ψcl(M,E) → C; A 7−→ AQ−z by means of an elliptic
differential operator Q ∈ Ψcl(M,E) of order q > 0 with spectral cut.

Spectral ζ-function

The holomorphic map z 7→ Tr
(
AQ−z

)
on the half-plane ℜ(z) > n+a

q
extends

to a meromorphic map

z 7−→ ζA,Q(z) := TR
(
AQ−z)︸ ︷︷ ︸

canonical trace

with a simple pole at zero and Resz=0TR
(
AQ−z)︸ ︷︷ ︸

complex residue

= 1
q

Res (A)︸ ︷︷ ︸
Wodzicki residue

.

Q-regularised trace of a differential operator

A differential operator =⇒ holomorphicity of the map z 7−→ ζA,Q(z) at zero:

TrQ(A) := ζA,Q(0) = − 1

q
Res (A log(Q))︸ ︷︷ ︸

Wodzicki residue

(defect formula [S. Scott, S.P. PLMS 2007])
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The index as a logarithmic Wodzicki residue

Notations

▶ π : E = E+ ⊕ E− −→ M a finite rank Z2-graded Clifford hermitian bundle;

▶ D = D+ ⊕ D− with D± : C∞(M,E±) −→ C∞(M,E∓) an odd elliptic
differential operator of order 1;

▶ ∆ := D2 = D−D+ ⊕ D+D− is an even elliptic essentially self-adjoint differential
operator of order 2; π∆ orthogonal projection on Ker(∆).

The index of D+

ind(D+) := dim(Ker(D+))− dim(Ker(D−))

=
MacKean−Singer

Tr
(
(D− D+ + πD+ )

−z
)
− Tr

(
(D+ D− + πD− )−z

)
when ℜ(z) >> 0

= sTR
(
I (∆ + π∆)−z

)
(meromorphic extension)

= lim
z→0

(
sTR

(
(∆ + π∆)−z

))
(holomorphic at zero and independent of z)

so ind(D+) = −
1

2
sRes (log∆)︸ ︷︷ ︸

local

(defect formula).
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Where we stand

1. We introduced various regularisation techniques:
▶ cut-off regularisation,
▶ dimensional regularisation,
▶ zeta regularisation

but not heat-kernel regularisation.

2. We discussed their usage in
▶ number theory: ζ-functions,
▶ quantum field theory: 1-loop Feynman integral
▶ microlocal analysis and index theory: the index as a logarithmic residue.
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From simple to multiple sums or integrals
From a single to several variables
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From simple to multiple integrals: Feynman integrals

The Feynman integral for the one loop graph G1 without external momenta reads

I (G1) =

∫
R4

1

k2 + m2
dk =

∫
R4

σ(k) dk with σ(k) :=
1

k2 + m2
.

The Feynman integral for the sunset graph G2 without external momenta reads

I (G2) =

∫
R4

∫
R4

1

k2
1 +m2

1

1

k2
2 +m2

2

1

(k1 + k2)2 +m2
3

dk1 dk2,

It is an integral over the hyperplane k3 = k1 + k2 in R4 × R4 × R4:

I (G1) =

∫
k3=k1+k2

1

k2
1 +m2

1

1

k2
2 +m2

2

1

k2
3 +m2

3

dk1dk2dk3

=

∫
k3=k1+k2

σ1 ⊗ σ2 ⊗ σ3(k1, k2, k3) dk1dk2dk3,

with σj(k) :=
1

k2+m2
j
, which is a polyhomogeneous symbol of order −2.
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Multiple integrals with affine (resp. linear) constraints

Claim

Feynman integral are multiple integrals of tensor products of symbols on
intersections of hyperpanes:

I (G) =

∫
∩Hj⊂(R4)k

σ1 ⊗ · · · ⊗ σk ,

where Hj , j ∈ J are affine (resp. linear) hyperplanes.

Two ways of regularising Feynman integrals

z 7−→ I (G)(z) =

∫
∩Hj⊂(R4)k

σ1(z)⊗· · ·⊗σk(z) (e.g. dimensional regularisation)

or

(z1, z2, · · · , zk) 7−→ I (G)(z) =

∫
∩Hj⊂(R4)k

σ1(z1)⊗ · · · ⊗ σk(zk),

using analytic regularisation.
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From simple to multiple sums: Multiple zeta functions

Recall that the zeta function reads

ζ(s) =
∞∑
n=1

1

ns
=

∞∑
n=1

σs with σs(x) :=
χ(x)

x s
of order− sj

It generalises to multiple zeta functions

ζ(s1, · · · , sk ) =
∞∑

n1>n2>···>nk>0

σs1 (n1) · · · σsk (nk ),

It is a discrete sum over the half spaces 0 < xk < xk−1 · · · < x1 in Rk
+:

ζ(s1, · · · , sk ) =
∑

0<nk<nk−1···<n1

χ(n1)

ns11

χ(n2)

ns22
· · ·

χ(nk )

n
sk
k

=
∑

nk<nk−1···<n1

(σs1 ⊗ σs2 ⊗ · · · ⊗ σsk ) (n1, n2, · · · , nk ).
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Multiple sums with affine (resp. linear) constraints

Sums over interesections of half spaces

Multiple sums of tensor products of symbols with affine constraints:∑
∩H+

j ⊂Rk
+

σ1 ⊗ · · · ⊗ σk ,

H+
j , j ∈ J are affine (resp. linear) half spaces delimited by a hyperplane Hj .

Two ways of regularising discrete sums

z 7−→
∑

∩H+
j ⊂Rk

σ1(z)⊗ · · · ⊗ σk(z)

or
(z1, z2, · · · , zk) 7−→

∑
∩H+

j ⊂Rk

σ1(z1)⊗ · · · ⊗ σk(zk).
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II. Circumventing non multiplicativity: coalgebraic approach

Single parameter regularisations
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Non multiplicativity of the finite part

Single parameter regularisation

Let f (z) =
a−1

z
+ a0 + a1 z + o(z); g(z) =

b−1

z
+ b0 + b1 z + o(z), then

f (z) g(z) =
a−1 b−1

z2
+

a−1 b0 + a0 b−1

z︸ ︷︷ ︸
singular part

+ a0 b0 + a−1 b1 + a1 b−1︸ ︷︷ ︸
fpz=0(f (z) g(z))

+O(z).

The finite part is not multiplicative

fpz=0 (f (z) g(z)) = fpz=0 (f (z)) fpz=0 (g(z)) + b1 Resz=0f (z) + a1 Resz=0g(z)︸ ︷︷ ︸
extra terms

Multi parameter regularisation

The finite part is partially multiplicative... thanks to a locality relation.
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Single parameter regularisation: a coproduct comes to the rescue

Coalgebras

▶ They are dual-in the category-theoretic sense of reversing arrows- to unital
associative algebras. Turning all arrows around in the axioms of unital
associative algebras, one obtains a K-vector space equipped with a
▶ coproduct ∆ : C −→ C ⊗ C
▶ counit ϵ : C −→ K;

that obey the axioms of counitarity and coassociativity.
▶ If C is equipped with

▶ a product m : C ⊗ C −→ C
▶ and a unit u : K −→ C,

both of which obey some compatibility relations with the product and the
counit, it is called a Hopf algebra.

▶ Examples are the Hopf algebras of Feynman graphs [Kreimer, Connes and
Kreimer],of planar trees [Kreimer, Foissy,..],of convex polyhedral cones
[Guo, S.P., Zhamg]....
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How the coproduct comes to the rescue

Assume that C is a Hopf algebra.

Building a character

From a character which stems from a single parameter regularisation:

Φ : C −→ M0(C)

(M0(C) is the space of meromorphic germs at z = 0) we want to build a character:

φ : C −→ C.

Warning

φ := fpz=0 ◦ Φ does not do the job due to the fact that fpz=0 is not a character.

However, the coproduct ”undoes” the products which lead to the extra terms. One
can then introduce adequate counterterms to cancel them.

Birkhoff-Hopf factorisation

M0(C) = M+
0 (C)⊕M−

0 (C)=⇒ Φ = Φ+ ⋆ Φ−. Take φ := fpz=0 ◦ Φ+.

S.Paycha Potsdam

Renormalisation 12 of 19



How the coproduct comes to the rescue

Assume that C is a Hopf algebra.

Building a character

From a character which stems from a single parameter regularisation:

Φ : C −→ M0(C)

(M0(C) is the space of meromorphic germs at z = 0) we want to build a character:

φ : C −→ C.

Warning

φ := fpz=0 ◦ Φ does not do the job due to the fact that fpz=0 is not a character.

However, the coproduct ”undoes” the products which lead to the extra terms. One
can then introduce adequate counterterms to cancel them.

Birkhoff-Hopf factorisation

M0(C) = M+
0 (C)⊕M−

0 (C)=⇒ Φ = Φ+ ⋆ Φ−. Take φ := fpz=0 ◦ Φ+.

S.Paycha Potsdam

Renormalisation 12 of 19



How the coproduct comes to the rescue

Assume that C is a Hopf algebra.

Building a character

From a character which stems from a single parameter regularisation:

Φ : C −→ M0(C)

(M0(C) is the space of meromorphic germs at z = 0) we want to build a character:

φ : C −→ C.

Warning

φ := fpz=0 ◦ Φ does not do the job due to the fact that fpz=0 is not a character.

However, the coproduct ”undoes” the products which lead to the extra terms. One
can then introduce adequate counterterms to cancel them.

Birkhoff-Hopf factorisation

M0(C) = M+
0 (C)⊕M−

0 (C)=⇒ Φ = Φ+ ⋆ Φ−. Take φ := fpz=0 ◦ Φ+.

S.Paycha Potsdam

Renormalisation 12 of 19



How the coproduct comes to the rescue

Assume that C is a Hopf algebra.

Building a character

From a character which stems from a single parameter regularisation:

Φ : C −→ M0(C)

(M0(C) is the space of meromorphic germs at z = 0) we want to build a character:

φ : C −→ C.

Warning

φ := fpz=0 ◦ Φ does not do the job due to the fact that fpz=0 is not a character.

However, the coproduct ”undoes” the products which lead to the extra terms. One
can then introduce adequate counterterms to cancel them.

Birkhoff-Hopf factorisation

M0(C) = M+
0 (C)⊕M−

0 (C)=⇒ Φ = Φ+ ⋆ Φ−. Take φ := fpz=0 ◦ Φ+.

S.Paycha Potsdam

Renormalisation 12 of 19



How the coproduct comes to the rescue

Assume that C is a Hopf algebra.

Building a character

From a character which stems from a single parameter regularisation:

Φ : C −→ M0(C)

(M0(C) is the space of meromorphic germs at z = 0) we want to build a character:

φ : C −→ C.

Warning

φ := fpz=0 ◦ Φ does not do the job due to the fact that fpz=0 is not a character.

However, the coproduct ”undoes” the products which lead to the extra terms. One
can then introduce adequate counterterms to cancel them.

Birkhoff-Hopf factorisation

M0(C) = M+
0 (C)⊕M−

0 (C)=⇒ Φ = Φ+ ⋆ Φ−. Take φ := fpz=0 ◦ Φ+.

S.Paycha Potsdam

Renormalisation 12 of 19



How the coproduct comes to the rescue

Assume that C is a Hopf algebra.

Building a character

From a character which stems from a single parameter regularisation:

Φ : C −→ M0(C)

(M0(C) is the space of meromorphic germs at z = 0) we want to build a character:

φ : C −→ C.

Warning

φ := fpz=0 ◦ Φ does not do the job due to the fact that fpz=0 is not a character.

However, the coproduct ”undoes” the products which lead to the extra terms. One
can then introduce adequate counterterms to cancel them.

Birkhoff-Hopf factorisation

M0(C) = M+
0 (C)⊕M−

0 (C)=⇒ Φ = Φ+ ⋆ Φ−. Take φ := fpz=0 ◦ Φ+.

S.Paycha Potsdam

Renormalisation 12 of 19



How the coproduct comes to the rescue

Assume that C is a Hopf algebra.

Building a character

From a character which stems from a single parameter regularisation:

Φ : C −→ M0(C)

(M0(C) is the space of meromorphic germs at z = 0) we want to build a character:

φ : C −→ C.

Warning

φ := fpz=0 ◦ Φ does not do the job due to the fact that fpz=0 is not a character.

However, the coproduct ”undoes” the products which lead to the extra terms. One
can then introduce adequate counterterms to cancel them.

Birkhoff-Hopf factorisation

M0(C) = M+
0 (C)⊕M−

0 (C)=⇒ Φ = Φ+ ⋆ Φ−. Take φ := fpz=0 ◦ Φ+.

S.Paycha Potsdam

Renormalisation 12 of 19



How the coproduct comes to the rescue

Assume that C is a Hopf algebra.

Building a character

From a character which stems from a single parameter regularisation:

Φ : C −→ M0(C)

(M0(C) is the space of meromorphic germs at z = 0) we want to build a character:

φ : C −→ C.

Warning

φ := fpz=0 ◦ Φ does not do the job due to the fact that fpz=0 is not a character.

However, the coproduct ”undoes” the products which lead to the extra terms. One
can then introduce adequate counterterms to cancel them.

Birkhoff-Hopf factorisation

M0(C) = M+
0 (C)⊕M−

0 (C)=⇒ Φ = Φ+ ⋆ Φ−. Take φ := fpz=0 ◦ Φ+.

S.Paycha Potsdam

Renormalisation 12 of 19



How the coproduct comes to the rescue

Assume that C is a Hopf algebra.

Building a character

From a character which stems from a single parameter regularisation:

Φ : C −→ M0(C)

(M0(C) is the space of meromorphic germs at z = 0) we want to build a character:

φ : C −→ C.

Warning

φ := fpz=0 ◦ Φ does not do the job due to the fact that fpz=0 is not a character.

However, the coproduct ”undoes” the products which lead to the extra terms. One
can then introduce adequate counterterms to cancel them.

Birkhoff-Hopf factorisation

M0(C) = M+
0 (C)⊕M−

0 (C)=⇒ Φ = Φ+ ⋆ Φ−. Take φ := fpz=0 ◦ Φ+.

S.Paycha Potsdam

Renormalisation 12 of 19



How the coproduct comes to the rescue

Assume that C is a Hopf algebra.

Building a character

From a character which stems from a single parameter regularisation:

Φ : C −→ M0(C)

(M0(C) is the space of meromorphic germs at z = 0) we want to build a character:

φ : C −→ C.

Warning

φ := fpz=0 ◦ Φ does not do the job due to the fact that fpz=0 is not a character.

However, the coproduct ”undoes” the products which lead to the extra terms. One
can then introduce adequate counterterms to cancel them.

Birkhoff-Hopf factorisation

M0(C) = M+
0 (C)⊕M−

0 (C)=⇒ Φ = Φ+ ⋆ Φ−. Take φ := fpz=0 ◦ Φ+.

S.Paycha Potsdam

Renormalisation 12 of 19



III. Circumventing non multiplicativity: Locality

Multiple parameter regularisations
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Functions of several variables in QFT

Speer’s analytic renormalisation [JMP 1967] revisited

Eugene Speer considers Feynman amplitudes given by the coefficients of the

perturbation-series expansion of the S matrix in a Lagrangian field theory (with non

zero mass).

Excerpt of Speer’s article

In this paper we apply a method of defining divergent quantities which was originated

by Riesz and has been used in various contexts by many authors. [....]We find it

necessary to consider functions of several complex variables z1, · · · , zk , one associated

with each line of the Feynman graph.The main difficulty is the extension of the above

[Riesz’s] treatment of poles to the more complicated singularities which occur in

several complex variables...
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Brain teaser

(We assume the poles are at zero)
Speer shows that the divergent expressions lie in the filtered algebra
MFeyn(C∞) := ∪∞

k=1M
Feyn(Ck ) consisting of Feynman functions f : Ck → C,

f =
h(z1, · · · , zk )
L1s1 · · · Lmsm

, Li =
∑
j∈Ji

zj , Ji ⊂ {1, · · · , k}, h holom. at zero.

Questions:

1. How to evaluate f consistently at the poles z1 = · · · = zk = 0?

2. What freedom of choice do we have for the evaluator?

Evaluating a fraction with a linear pole at zero

f (z1, z2) =
z1 − z2
z1 + z2

|z1=0,z2=0
=


1 or − 1 ?

0 ?
10000 ?
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Multiparameter meromorphic germs

Multiparameter meromorphic germs with linear poles

▶ M0(Ck ) ∋ f = h(ℓ1,··· ,ℓn)
L
s1
1 ···Lsnn

, h holomorphic germ, si ∈ Z≥0,

▶ ℓi : Ck → C, Lj : Ck → C linear forms.

▶ Dependence space Dep(f ) := ⟨ℓ1, · · · , ℓm, L1, · · · , Ln⟩.

Separation of variables: ⊥Q

On M0(C∞) =
⋃

k∈ M0(Ck ); f1 ⊥Q f2 :⇐⇒ Dep(f1)⊥QDep(f2).

M−
0 (C

k) is the set of polar germs f = h
g
with h⊥Q g .

Back to the brain teaser
ℓ := z1 ⊥ z2 =: L =⇒ z1

z2
∈ M−

0 (C2)

(ℓ := z1 − z2) ⊥ (z1 + z2 =: L) =⇒ z1−z2
z1+z2

∈ M−
0 (C2).
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Decomposition of M0(Ck)

Recall that M−
0 (C

k) is the set of polar germs f = h
g
with h⊥Q g .

Orthogonal projection [Berline and Vergne 2005, Guo, Zhang, S.P. 2015]

⊥Q induces a splitting and the induced projection onto the holomorphic part:

M0(Ck) = M+
0 (C

k)⊕QM−
0 (C

k) and π+
Q : M• −→ M+,
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Question

Assume that C is an algebra.

Building a character

From a character which stems from a multiple parameter regularisation:

Φ : C −→ M0(Ck )

(M0(Ck ) is the space of meromorphic germs at z = 0) we want to build a character:

φ : C −→ C.

Question

Does φ := fpz=0 ◦ π+
Q ◦ Φ define a character?

Answer

φ := fpz=0 ◦ π+
Q ◦ Φ defines a partial character.
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Where we stand

Development: algebraic and analytic methods for renormalisation

1. From simple to multiple sums or integrals: sub-divergences.

2. Single parameter regularisation: coproducts and Birkhoff-factorisation.

3. Analytic regularisation à la Speer and meromorphic functions.
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▶ The concept of locality as a leading thread

▶ Locality on meromorphic functions in several variables with linear poles

▶ How locality comes into play when ”evaluating” them at poles.
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The concept of locality as a leading thread

S.Paycha Potsdam

Renormalisation 4 of 27



Locality principle

The principle of locality (or locality principle) states that an object is influenced
directly only by its immediate surroundings.

Thus, one can separate events located in different regions of space-time and
should be able to measure them independently.

Our aim

▶ Propose a mathematical framework which encompasses the main features
of the locality principle in QFT;

▶ use this framework to carry out renormalisation in accordance with the
locality principle.
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Causal separation

Light cone, past and future

In the Minkowski space (Rd , g), where g(x , y) = −x0y0 +
∑d−1

j=1 xjyj is the Lorentzian

scalar product, there is a notion of ”past” and ”future”:

(picture downloaded from Wikipedia)

Two sets S1 andS2 are causally separated (S1∥S2) if and only if

Si does not lie in the future of Sj for i ̸= j .
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Locality in axiomatic QFT

The Wightman field φ : S(Rd) → O(H) obeys the locality axiom

Supp(f1)∥Supp(f2) =⇒ [φ(f1), φ(f2)] = 0. (1)

The (relative) scattering matrix Sf satisfies the locality condition

Supp(f1)∥Supp(f2) =⇒ Sf (f1 + f2) = Sf (f1) Sf (f2)

=⇒ [Sf (f1), Sf (f2)] = 0. (2)
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Mathematical interpretation

We introduce two binary relations
▶ on operators:

O1⊤′O2 :⇐⇒ [O1,O2] = 0, (3)

▶ on test functions:
f1⊤f2 :⇐⇒ Supp(f1)∥Supp(f2). (4)

Interpretation of (1): compatibility with the locality relation

f1⊤f2 =⇒ φ(f1)⊤′φ(f2). (5)

Interpretation of (2): partial additivity

f1⊤f2 =⇒ Sf (f1 + f2) = Sf (f1) Sf (f2). (6)
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Locality as a symmetric binary relation
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Algebraic locality

Definition of locality

A set is a couple (X ,⊤) where X is a set and ⊤ ⊆ X × X is a symmetric relation on
X , called locality relation (or independence relation) of the locality set:

x1⊤x2 ⇐⇒ (x1, x2) ∈ ⊤, ∀x1, x2 ∈ X .

First examples of

▶ X⊤∩Y :⇐⇒ X∩Y = ∅ on subsets X ,Y of a set Z .

▶ X⊤Y :⇐⇒ X⊥Y on subsets X, Y of an euclidean vector space (V ,⊥).

(ϵ-)Separation of supports

Let U ⊂ Rn be an open subset and ϵ ≥ 0. Two functions ϕ, ψ in D(U) are
independent i.e., ϕ⊤ϵ ψ whenever d (Supp(ϕ), Supp(ψ)) >ϵ.

For ϵ = 0, this amounts to disjointness of supports, otherwise to ϵ-separation of
supports.
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For ϵ = 0, this amounts to disjointness of supports, otherwise to ϵ-separation of
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Further examples

Probability theory: independence of events

Given a probability space P := (Ω,Σ,P) and two events A,B ∈ Σ:

A⊤B ⇐⇒ P(A∩B) = P(A)P(B).

Geometry: transversal manifolds

Given two submanifolds L1 and L2 of a manifold M:

L1 ⊤ L2 :⇐⇒ L1 ⋔ L2 ⇐⇒ TxL1 +TxL2 = TxM ∀x ∈ L1 ∩ L2.

Number theory: coprime numbers

Given two positive integers m, n in N:
m⊤ n ⇐⇒ m∧ n = 1.
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Locality category

Locality structures

▶ set X ⇝ locality set (X ,⊤); the polar set ofU is U⊤ := {x ∈ X, x⊤u ∀u ∈ U}

▶ semi-group (G ,mG ) ⇝ locality semi-group (G ,mG ,⊤)

(U ⊂ G =⇒ U⊤ semi-group);

▶ vector space (V ,+, ·) ⇝ locality vector space (V ,+, ·,⊤) (U ⊂ V =⇒ U⊤ vector space);

▶ algebra (A,+, ·,mA) ⇝ locality algebra (A,+, ·,mA,⊤).

Locality morphisms: f : (X ,⊤X ) → (Y ,⊤Y )

▶ locality map: (f × f )(⊤X ) ⊂ ⊤Y or equivalently x1⊤X x2 =⇒ f (x1)⊤Y f (x2);

▶ locality semi-group morphism f : (X ,mX ,⊤X ) → (Y ,mY ,⊤Y ):

f is a locality map andx1 ⊤X x2 =⇒ f (mX (x1, x2)) = mY (f (x1), f (x2))
etc...
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Example and counterexamples

Example: orthogonality

(Rn, ⟨·, ·⟩) equipped with the locality relation u⊤ y ⇐⇒ ⟨u, v⟩ = 0. (Rn,⊤,+)
is a locality semi-group:

⟨u,w⟩ = 0 ∧ ⟨v ,w⟩ = 0 =⇒ ⟨u + v ,w⟩ = 0.

Counterexample

C equipped with the locality relation x ⊤/∈Z y ⇐⇒ x + y ̸∈Z.
(C,⊤,+) is NOT a locality semi-group:
Indeed, for U = {1/3}, the polar set U⊤ is not stable under addition: for
x = y = 1/3 ∈ U, we have x⊤y , x ∈ U⊤ and y ∈ U⊤ but
x + y = 1/3+1/3 = 2/3 /∈U⊤.
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Locality relations are ubiquitious
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Local functionals

These are functions (fields) φ of the form F (φ) =
∫
M f

(
jkx (φ)

)
dx (here jkx (ϕ) is the k-th jet of ϕ at x): The

localised version at φ:

F (φ+ ψ) = F (φ) +

∫
M
f
(
jkx (ψ)

)
dx ∀ψ. (7)

Hammerstein property partial additivity

It is similar to a causality condition on S-matrices of [Epstein, Glaser (1973)],
[Bogoliubov, Shirkov (1959))], [Stückelberg (1950, 1951)]

φ1⊤∩φ2 =⇒F (φ1+φ+φ2) = F (φ1 + φ)−F (φ)+F (φ+ φ2) ∀φ. (8)

Comparing the two [Brouder, Dang, Laurent-Gengoux, Rejzner (2018)]

Provided the Gâteaux derivative DφF of F in the direction φ can be represented as a

function ∇φF such that the map φ 7→ ∇φF is smooth, then (7) ⇐⇒ (8).
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Local linear forms on pseudodifferential operators

Ψphg(M) ⊃ ΨΓ
phg(M) polyhomog. pseudodiff. operators on M with order in Γ ⊂ C.

Locality of linear forms

A linear form Λ : ΨΓ
phg(M) −→ C is local if and only if

χ⊤∩ χ
′ =⇒ Λ(χAχ′) = 0 ∀A ∈ ΨΓ

phg(M).

A local linear form: Wodzicki residue

res : ΨZ
phg(M) −→ C defined as an integral of the trace of the homogeneous

component of the symbol of degree − dim, is local.

The index as a Wodzicki residue

The index of a differential operator D of Dirac-type is local since

ind(D) ∼ res(log(D2)).

.
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Locality and singularities

Separation of wavefront sets

We define two locality relations on on D′(U), U ⊂ Rn:

v1 ⊤sing v2 ⇐⇒ Singsupp(v1)∩ Singsupp(v2) = ∅,

and v1 ⊤WF v2 ⇐⇒ WF(v1) ∩WF′(v2) = ∅

where we have set WF′(v) := {(x,−ξ) ∈ U × (Rn \ {0}) | (x, ξ) ∈ WF(v)}.

Counterexample

Distributions can be independent for ⊤WF and not for ⊤sing. We have

v1 ⊤sing v2 =⇒ v1 ⊤WF v2 but not conversely.The wavefront sets of ν1(ϕ) :=
∫
R2 ϕ(0, y) dy and

ν2(ϕ) :=
∫
R2 ϕ(x, 0) dx read

WF(ν1) = {((0, y); (λ, 0)) | y ∈ R, λ ∈ R \ {0}} ; WF(ν2) = {((x, 0); (0, µ)) | x ∈ R, µ ∈ R \ {0}}, so

ν1 ⊤WF ν2 but ν1 ⊤sing̸ ν2.
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Partial product and locality

Partial product of distributions

(Hörmander) ν1 ⊤WF ν2 ⇒ (the product ν1 · ν2 is well-defined.)

Partial product of pseudodifferential operators of non-integer order

We equip Ψ/∈Z
pgh (the canonical trace TR is well defined) with the locality relation

A1 ⊤/∈Z A2 :⇔ (ord(A1) + ord(A2)/∈ Z) ⇒ (TR([A1,A2])= 0).

Counterexample

Yet C equipped with the locality relation x ⊤/∈Z y ⇐⇒ x + y ̸∈Z.
(C,⊤,+) is NOT a locality semi-group:for U = {1/3} we have
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S.Paycha Potsdam

Renormalisation 18 of 27



Partial product and locality

Partial product of distributions
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(Hörmander) ν1 ⊤WF ν2 ⇒ (the product ν1 · ν2 is well-defined.)

Partial product of pseudodifferential operators of non-integer order

We equip Ψ/∈Z
pgh (the canonical trace TR is well defined) with the locality relation

A1 ⊤/∈Z A2 :⇔ (ord(A1) + ord(A2)/∈ Z) ⇒ (TR([A1,A2])= 0).

Counterexample

Yet C equipped with the locality relation x ⊤/∈Z y ⇐⇒ x + y ̸∈Z.
(C,⊤,+) is NOT a locality semi-group:for U = {1/3} we have

(1/3, 1/3) ∈ (U⊤ × U⊤) ∩ ⊤ but 1/3+1/3 = 2/3/∈U⊤.

S.Paycha Potsdam

Renormalisation 18 of 27



Evaluating meromorphic germs at poles

Locality on meromorphic germs comes to the rescue
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Where renormalisation comes into play: Speer’s generalised
evaluators

Reminder: Meromorphic germs in MFeyn(Ck) have linear poles Li =
∑

ji∈Ji
ji .

Speer introduces evaluators, which consist of a family E = {Ek , k ∈ N} of linear
forms Ek : MFeyn(Ck) → C, compatible with the filtration, which fulfill the

following conditions:

1. (extend ev0) E is the ordinary evaluation ev0 at zero on holom. germs;

2. (partial multiplicativity) E(f1 · f2) = E(f1) · E(f2) if f1 and f2 depend on different

sets (we call them independent) of variables zi ;

3. E is invariant under permutations of the variables Ek ◦ σ∗ = Ek for any σ ∈ Σk ,

with σ∗f (z1, · · · , zk ) := f (zσ(1), · · · , zσ(k));

4. (continuity) If fn(z⃗k ) · Ls11 · · · Lsmm
uniformly−→
n→∞

g(z⃗k ) as holomorphic germs, then

Ek (fn) −→
n→∞

Ek ( lim
n→∞

fn) (investigated in [Dahmen, Schmeding, S.P. 2023] in

the context of Silva spaces).

Drawback: Speer’s approach depends on the choice of coordinates
z1, · · · , zk , · · · .
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Locality on meromorphic germs with linear poles

Meromorphic germs with linear poles

▶ M0(Ck ) ∋ f = h(ℓ1,··· ,ℓn)
L
s1
1 ···Lsnn

, h holomorphic germ, si ∈ Z≥0,

▶ ℓi : Ck → C, Lj : Ck → C linear forms.

▶ Dependence space Dep(f ) := ⟨ℓ1, · · · , ℓm, L1, · · · , Ln⟩.

Locality on meromorphic germs

On M0(C∞) =
⋃

k∈N M0(Ck ); f1 ⊥Q f2 :⇐⇒ Dep(f1)⊥QDep(f2).

M−
0 (C

k) is the set of polar germs f = h
g
with h⊥Q g .

Reminder: Decomposition of meromorphich germs

⊥Q induces a splitting:

M0(Ck ) = M+
0 (C

k )⊕Q M−
0 (Ck ).

[Berline and Vergne 2005, Guo, Zhang, S.P. 2015]
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Meromorphic germs with prescribed types of poles

Data

▶
(
M•(Ck),⊥Q

)
an (locality) algebra of meromorphic germs at zero with a

prescribed type of poles (e.g. Chen ⊂ Speer ⊂ Feynman) in S•;

▶ M+
0 (C

k) ⊂ M•(Ck) the algebra of holomorphic germs at zero;

▶ the evaluation at zero: ev0 : M+
0 (C

k) → C, h 7→ h(0);

▶ M−
0 (C

k) is the space of polar germs f = h
g
with h⊥Q g .

Functions with a prescribed set of poles

A function f in M•
0 (Ck) with poles in S• decomposes uniquely

f = h0︸︷︷︸
∈M+

0 (Ck )

+
∑
S∈S•

hS

S︸ ︷︷ ︸
∈M−

0 (Ck )

, hS ⊥Q S .
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Back to the locality principle in QFT

Principle of locality: factorisation on independent events

a and b︸ ︷︷ ︸
∈A

independent =⇒
factorisation

Meas (a ∨ b)︸ ︷︷ ︸
concatenation

= Meas(a) · Meas(b).

We consider M• := M0(C∞) := ∪∞
k=1M

•
0 (C

k ) consisting of meromorphic

functions/germs f : Ck → C with linear poles at zero,

f =
h(z⃗)

Ls11 (z⃗) · · · Lsmm (z⃗)
, Li linear in z⃗ := (z1, · · · , zk ), h holom. at zero.

Aim: evaluate meromorphic germs at poles according to the principle of locality: ”two
events separated in space can be measured independently.”

Generalised evaluators
We want to build locality linear forms:

E :
(
M•,⊥Q

)
−→ C, f ⊥Q g =⇒ E(f · g) = E(f ) · E(g).

which extends the ordinary evaluation at zeero ev0 : M+ −→ C.
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A locality Galois type group

Where we stand

▶
(
M•,⊥Q

)
an (locality) algebra of meromorphic germs at zero with a

prescribed type of poles (e.g. Chen ⊂ Speer ⊂ Feynman);

▶ M+ ⊂ M• the algebra of holomorphic germs at zero;

▶ the evaluation at zero: ev0 : M+ → C;
▶ M•Q

− is generated by polar germs f = h
g
with h⊥Q g .

Locality projection

⊥Q induces a locality projection onto the holomorphic part:

M• = M+⊕QM•Q
− =⇒ π+

Q : M• −→ M+ is a locality projection.

Definition
GalQ (M•/M+) is the Galois geoup of (locality) isomorphisms of

(
M•,⊥Q

)
that

leave holomorphic germs invariant.
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Classification of locality evaluators
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Theorem [Guo, S.P., Zhang, CMP 2024]

Definition

A locality evaluator at zero E : M• −→ C is a linear form, which i) extends the

ordinary evaluation ev0 at zero, and ii) factorises on independent germs (i.e., it is a

locality character):

f1⊥Q f2 =⇒ E(f1 · f2) = E(f1) · E(f2).

An emblematic evaluator: Minimal subtraction scheme

EMS : M• π+
Q

−→ M+
ev0−→ C is a locality evaluator.

Where the Galois group GalQ (M•/M+) comes into play.

Main theorem: A classification of locality evaluators

A locality evaluator at zero E : M• −→ C is of the form:

E = ev0 ◦ π+Q︸ ︷︷ ︸
EMS

◦ TE︸︷︷︸
∈GalQ (M•/M+)

.
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