SRNI - LECTURE 1

INTRODUCTION

SUBHANIFOLDS OF CONTACT STRUCTURES

- -CONTACT STRUCTURES
- -(1D) LEGENDRIAN & TRANSVERSE KNOTS, LEGENDRIAN GRAPHS
- (2D) CONVEX SURFACES
- NEIGHBOURHOOD THEORENS
- TIGHT & OVERTWISTED CONTACT STRUCTURES

UNIVERSITY OF VIENNA

JOINT WORK WITH JOAN LICATA

HE GIROUX CORRESPONDENCE VIA CONVEX SURFACES VERA VÉRTESI

NTRODUCTION

1973 VINKELNKEMPER: FIRST USED THE WORD

"OPEN BOOK DECOMPOSITION"

BUT IT WAS ALREADY KNOWN & STUDIED UNDER DIFFERENT NAMES:

- · GLOBAL POINCARE BIRKHOFF SECTION
- · RELATIVE HAPPING TORUG
- · LEFSHETZ/ HILNOR FIBRATION
- FIBERED LINKS
- · SPINNABLE STRUCTURES

INTRODUCTION

INTRODUCTION

INTRODUCTION

NTRODUCTION

GC HAS BEEN EXTENSIVELY USED TO PROVE THAS ABOUT CTCT 3-NFDS

- 2000 THE ORIGINAL PROOF OF GIRDUX WAS INCOMPLETE (MASSOT WROTE DOWN A COMPLETE PROOF BUT DIDN'T) PUBLISH IT
- 2023 BREEN HONDA HUANG : PROOF OF THE GIROUX CORRESPONDENCE FOR CONTACT STRUCTURES IN ANY ODD DIMENSIONS
- 1013 LICATA Y. : PROOF OF THE GIROUX CORRESPONDENCE

FOR TIGHT CONTACT 3-NANIFOLDS (INDEPENDENT)

2024 LICATA - Y. : EXTENDED OUR PROOF TO WORK FOR ANY CONTACT 3- NANIFOLD

APPLICATIONS

IN CONTACT TOPOLOGY

+ FILLABILITY

- GIROUX : TOPOLOGICAL DESCRIPTION OF STEIN-FILLABLE CONTACT 3-MANIFOLDS
- ELIASHBERG, ETNYRE : ANY WEAK SYMPLECTIC FILLING OF A CONTACT 3-MANIFOLD CAN BE EMBEDDED INTO A CLOSED SYMPLECTIC MANIFOLD
- + CONTACT SURGERY
 - WAND: CONTACT SURGERY PRESERVES TIGHTNESS

KEGEL- STENHENDE - V-ZUDDAS : CLASSIFICATION OF LEGENDRIAN

SURGERY DIAGRANS DESCRIBING THE SAME CONTACT HANIFOLD

SURGERY: REHOVE NEIGHBOURHOOD OF A KNOT

APPLICATIONS

SURGERY: REHOVE NEIGHBOURHOOD OF A KNOT

& GLUE BACK A D' S' DIFFERENTLY

APPLICATIONS

SURGERY: REHOVE NEIGHBOURHOOD OF A KNOT

& GLUE BACK A D' × S' DIFFERENTLY

TOPOLOGY

<u>KRONHEIMER - HROWKA</u> : EVERY NONTRIVIAL KNOT HAS PROPERTY P <u>OZSYA'TH - SZABÓ</u>: THE UNKNOT, TREFOIL & FIGURE - EIGHT KNOT ARE CHARACTERISED BY THEIR SURGERIES <u>OZSYA'TH - SZABÓ</u>: THE THURGTON NORM IS DETERMINED BY HEEGAARD FLOER HOMOLOGY <u>GIROUX - GOODMAN</u>: INDUCTIVE CONSTRUCTION OF FIBERED KNOTS IN S³

- LECTURE 1 : SUBHANIFOLDS OF CONTACT STRUCTURES
- LECTURE 2 : DESCRIBING CONTACT STRUCTURES
- LECTURE 3 : PROOF OF GIROUX CORRESPONDENCE

- LECTURE 1 : SUBHANIFOLDS OF CONTACT STRUCTURES
 - -CONTACT STRUCTURES
 - -(1D) LEGENDRIAN & TRANSVERSE KNOTS, LEGENDRIAN GRAPHS
 - (2 D) CONVEX SURFACES
 - NEIGHBOURHOOD THEORENS
 - TIGHT & OVERTWISTED CONTACT STRUCTURES
- LECTURE 2 : DESCRIBING CONTACT STRUCTURES
- LECTURE 3 : PROOF OF GIROUX CORRESPONDENCE

- LECTURE 1 : SUBHANIFOLDS OF CONTACT STRUCTURES
- LECTURE 2 : DESCRIBING CONTACT STRUCTURES
 - CONTACT CELL DECOMPOSITIONS
 - CONVEX SURTACE THEORY BYPASSES
 - CONTACT HEEGAARD SPLITTINGS (PROOF OF EXISTENCE)
 - OPEN BOOK DECONPOSITIONS
 - OPEN BOOK DECONPOSITIONS & CONTACT HEEGAARD SPLITTINGS
- LECTURE 3 : PROOF OF GIROUX CORRESPONDENCE

- LECTURE 1 : SUBHANIFOLDS OF CONTACT STRUCTURES
- LECTURE 2 : DESCRIBING CONTACT STRUCTURES
- LECTURE 3 : PROOF OF GIROUX CORRESPONDENCE
 - STABILISATION
 - STATEMENT OF GIROUX CORRESPONDENCE
 - IDEA OF TROOF
 - -FURTHER DIRECTIONS

SUBMANIFOLDS IN CONTACT STRUCTURES

CONTACT STRUCTURES

CONTACT STRUCTURES

COORIENTED CONTACT STRUCTURE : GLOBAL &

CONTACT STRUCTURES

COORIENTED CONTACT STRUCTURE : GLOBAL &

DARBOUX THM: LOCALLY ANY CONTACT STRUCTURE IS <u>CONTACTONORPHIC</u> TO $1R^3$, $3_{st} = kr(dz - ydx)$ DIFFEONORPHISN THAT CARRIES 3 TO 3^3

EQUIVALENCE OF CONTACT STRUCTURES (H, S)& (M', S') CONTACT STRUCTURES · CONTACTONORPHISH : (H, J) = (H, J) = (H, J) = (H, J) = DIFFEONORPHISH \$ \$ + + + THAT CARRIES & TO 3' : \$ 3=5' WHEN M=M' • HONOTOPY : 3=3 IF J 1- PARAMETER FAHILY OF CONTACT STRUCTURES (3) + E[0,1] ON M WITH 3=3. & 3=3. · ISOTOPY: 3 x 3 IF J 1- PARAMETER FAMILY OF SELF - DIFFEONORPHISM $(\phi_{t})_{t \in [0, 4]}$ OF M WITH $\phi_{0} = Id$ & $\cdot = (\phi_{4})_{\mu} + \xi_{5}$ THM (GRAY STABILITY) . "HOMOTOPY = ISOTOPY" ANY HOHOTOPY (3.) LE[0,1] OF CONTACT STRUCTURES IS INDUCED BY AN ISOTOPY $(\phi_t)_{t \in [0,1]}$: $\phi_0 = Id$ & · 3. = (\$\$, \$\$,

1-DM: KNOTS

KNOTS IN CONTACT STRUCTURES DEF : LGM IS A LEGENDRIAN KNOT IF TPL < 3p Yp:

EGENDRIAN APPROXIMATION

THN : ANY KNOT K (M,S) CAN BE C°- APPROXIMATED BY

A LEGENDRIAN KNOT

IDEA OF TROOF : ENOUGH TO APPROXIMATE LOCALLY & BY

DARBOUX THM WE CAN WORK IN (183, 354)

$$\mathcal{F}_{st} = k r (dz - y dx)$$

⊾ Z

EGENDRIAN APPROXIMATION

THN: ANY KNOT K (M,S) CAN BE C°-APPROXIMATED BY A LEGENDRIAN KNOT

DEA OF PROOF, ENOUGH TO APPROXIMATE LOCALLY & BY DARBOUX THM WE CAN WORK IN (183,354)

$$\mathfrak{Z}_{s+} = \operatorname{kur} \left(\operatorname{dz} - \operatorname{y} \operatorname{dx} \right) \quad \longleftrightarrow \quad \mathfrak{y} = \frac{\operatorname{dz}}{\operatorname{dx}}^{*}$$

WE CAN READ OFF 4-COORDINATE FRON THE PROJECTION TO (x,z)-PLANE

$$z + (x(t), z(t), y(t)) + x$$

COR ANY SHOOTH KNOT CAN BE REPRESENTED BY A LEGENDRIAN KNOT

SHOOTH KNOTS

ISOTOPY: PATH IN THE

SPACE OF KNOTS

SHOOTH KNDTS

H KNOTS

ISOTOPY: PATH IN THE

SPACE OF KNOTS

ISOTOPY CLASS . CONNECTED

COMPONENT

ISOTOPY: PATH IN THE

SPACE OF KNOTS

ISOTOPY CLASS . CONNECTED

COMPONENT

SHOOTH KNOTS

ISOTOPY: PATH IN THE

SPACE OF KNOTS

ISOTOPY CLASS . CONNECTED

COMPONENT

LEGENDRIAN ISOTOPY : PATH

IN THE SPACE OF LEGENDRIAN

KNOTS

IF L ISOTOPIC TO L' INPLIES L LEGEDRIAN ISOTOPIC TO L'?

ISOTOPY : PATH IN THE

SPACE OF KNOTS

ISOTOPY CLASS . CONNECTED

COMPONENT

LEGENDRIAN ISOTOPY : PATH

IN THE SPACE OF LEGENDRIAN

KNOTS

SPACE OF KNOTS ISOTOPY CLASS . CONNECTED COMPONENT LEGENDRIAN ISOTOPY : PATH IN THE SPACE OF LEGENDRIAN KNOTS

L ISOTOPIC TO L' INPLIES L LEGEDRIAN ISOTOPIC TO L'? IF NO! - THE TWISTING OF 3 (W.R.T THE SEIFERT SURFACE) DOESN'T CHANGE DURING LEGENDRIAN ISOTOPY STABILISATION : CHANGES TWISTING THM (FUCHIS- TABACHNIKOV) & L IS ISOTOPIC TO L' AFTER SONE STABILISATIONS St(L) IS LEGEDRIAN ISOTOPIC TO St(L')

2-DIM: SURFACES

SURFACES IN CONTACT STRUCTURES DEF: A CONTACT VECTORFIELD X € € (M) IS A VECTORFIELD WHOSE TLOW PRESERVS 3 ↓ X_x ≈ = g ≈ FOR SOME g: N→R

X = 32

SURFACES IN CONTACT STRUCTURES DEF: A CONTACT VECTORFIELD X & X (M) IS A VECTORFIELD WHOSE FLOW PRESERVS 3 X x = 9x FOR SOME 9: N - R

X = 3x

SURFACES IN CONTACT STRUCTURES DEF A CONTACT VECTORFIELD X & X (M) IS A VECTORFIELD WHOSE FLOW PRESERVS 3 Xx x = q x FOR SOME q : N→R $X = \frac{3}{22}$ $\overline{Z} = h_{\overline{Z}} = 0$

DEF: Z GH IS CONVEX IF J X CONTACT VECTORFIELD X 介 Z

SURFACES IN CONTACT STRUCTURES
DEF: A CONTACT VECTORFIELD X
$$\in \mathbb{X}(M)$$

IS A VECTORFIELD WHOSE FLOW
PRESERVS \mathbb{X}
 $\mathbb{X}_{x} \ll = \mathbb{Q} \ll$ FOR SOME $\mathbb{Q}: M \rightarrow \mathbb{R}$
 $\mathbb{X}_{x} \ll = \mathbb{Q} \ll$ FOR SOME $\mathbb{Q}: M \rightarrow \mathbb{R}$
 $\mathbb{Z} = \mathbb{Z} \cong \mathbb{A} = 0$
DEF: $\mathbb{Z} \cong M$ IS CONVEX IF \mathbb{E} CONTACT VECTORFIELD $\mathbb{X} \triangleq \mathbb{Z}$
EQUIVALENTLY: \mathbb{Z} HAS A NEIGHBOURHOOD N(\mathbb{Z}) $\mathbb{E} \cong \mathbb{X} = \mathbb{I} \times \mathbb{I} = 0$
 \mathbb{I}
 $\mathbb{I} = \mathbb{I} = \mathbb{I} \times \mathbb{I} = \mathbb{I} = \mathbb{I} \times \mathbb{I} = \mathbb{I} = \mathbb{I} \times \mathbb{I} = \mathbb{I} \times \mathbb{I} = \mathbb{I} \times \mathbb{I} = \mathbb{I} = \mathbb{I} \times \mathbb{I} = \mathbb{I} \times \mathbb{I} = \mathbb{I} = \mathbb{I} = \mathbb{I} \times \mathbb{I} = \mathbb{I} =$

$$\frac{C_{ONVEX} SURFACES}{C_{ONVEX}} (GIROUX)$$

$$\frac{DEF}{Z} S H 1S CONVEX}{DEF} F = (X < S) - (x(X) = 0) CZ} IS THE DIVIDING CURVE
$$\frac{DFF}{T} = (X < S) - (x(X) = 0) CZ}{IS} IS THE DIVIDING CURVE}$$

$$\frac{PROP}{T} - THE ISOTOPY CLASS OF F IS INDEPENDENT OF THE CHOICE OF X - F DIVIDES Z INTO TWO PIECES: Z_{+} = (x(X) > 0) Z_{-} = (x(X) < 0)$$

$$\frac{CONVEX}{T} = (x(X) < 0)$$

$$\frac{CONVEX}{T} = (x(X) < 0) S = (x(X) < 0) S = (x(X) < 0)$$

$$\frac{CONVEX}{T} = (x(X) < 0) S = (x(X)$$$$

CONTACT MANIFOLDS WITH BOUNDARY DEF: $(\Sigma_{4})_{i \in [0,4]}$ is a <u>convex isotopy</u> if Σ_{4} is convex ($\forall i \in [0,4]$) WE WILL WORK WITH M³ 3- HANIFOLD WITH BOUNDARY, \vdots contact structure on H, S.T \ni H is convex

CONTACT MANIFOLDS WITH BOUNDARY DEF: $(\Sigma_{4})_{4 \in [0, 4]}$ is a <u>CONVEX ISOTOPY</u> IF Σ_{4} is convex $(\forall 4 \in [0, 4])$ WE WILL WORK VITH M³ 3-MANIFOLD WITH BOUNDARY, ξ CONTACT STRUCTURE ON N, S.T ∂H is CONVEX • SAHE FOR (H^{3}, ξ^{3})

VE CAN GLUE CONTACT STRUCTURES ALONG SURFACES WITH MATCHING DIVIDING CURVES

IDEA

WE CAN GLUE CONTACT STRUCTURES ALONG SURFACES WITH MATCHING DIVIDING CURVES

VE CAN GLUE CONTACT STRUCTURES ALONG SURFACES WITH MATCHING DIVIDING CURVES

WE CAN GLUE CONTACT STRUCTURES ALONG SURFACES WITH MATCHING DIVIDING CURVES

WE CAN GLUE CONTACT STRUCTURES ALONG SURFACES WITH MATCHING DIVIDING CURVES

WEAKLY CONTACT ISOTOPIC TO (H, 3)

STANDARD NEIGHBOURHOOD OF A LEGENDRIAN

<u>E.6</u>: 3 = kw (cos(z) dx - sin(z) dy)(ISOTOPIC TO 3 +)

THIS GIVES THE THURSTON-BENNEQUIN FRAMILY SOLUTIONS

THM: ANY LEGENDRIAN KNOT LG (N,3) HAS A NEIGHBOURHOOD N(L) CONTACTOMORPHIC TO N(L.)

NEIGHBOURHOOD N(L)=D2 * 5'

<u>F.G</u>: 3 = kw (cos(z) dx - sin(z) dy) (ISOTOPIC TO 3.+)

STANDARD NEIGHBOURHOOD OF A LEGENDRIAN

RMK AFTER THE ISOTOPY

TWISTING OF & W.R.T. Z ALONG L = - 1/2 MOL

Z1 & Z1 CONVEX SURTACES WITH CONNON LEGENDRIAN BOUNDARY L

Z1 & Z1 CONVEX SURTACES WITH CONNON LEGENDRIAN BOUNDARY L

ROUNDING EDGES

SRNI - LECTURE 2

DESCRIBING CONTACT STRUCTURES

- TIGHT & OVERTWISTED CONTACT STRUCTURES
- CONTACT CELL DECOMPOSITIONS
- CONVEX SURTACE THEORY BYPASSES
- CONTACT HEEGAARD SPLITTINGS (PROOF OF EXISTENCE)
- OPEN BOOK DECONPOSITIONS
- OPEN BOOK DECONPOSITIONS & CONTACT HEEGAARD SPLITTINGS

UNIVERSITY OF VIENNA

JOINT WORK WITH JOAN LICATA

HE GIROUX CORRESPONDENCE VIA CONVEX SURFACES VERA VÉRTESI

- TIGHT & OVERTWISTED CONTACT STRUCTURES
- CONTACT CELL DECOMPOSITIONS
- CONVEX SURFACE THEORY BYPASSES
- CONTACT HEEGAARD SPLITTINGS (PROOF OF EXISTENCE)
- OPEN BOOK DECONPOSITIONS
- OPEN BOOK DECONPOSITIONS & CONTACT HEEGAARD SPLITTINGS

 $Z = \Sigma_{+} \cup_{p} Z_{-}$ $(X) > 0 \qquad (X) < 0$ (X) = 0 (X) = 0 (X) = 0 (X) = 0 (X) = 0

>3 N(Z) IS DETERMINED BY PCZ

· Z CONVEX SURFACE WITH LEGENDRIAN BOUNDARY

CONY : ALL CPCT H HAS CONVEX 3 ~ CAN GLUE 3 ON THEH

STANDARD CONTACT STRUCTURE

OVERTWISTED CONTACT STRUCTURE

 $3_{st} = kr(dz - ydx)$ $3_{ot} = kr(cos(n) dz + r sin(r) dv)$

ARE 3 + & 30+ ISOTOPIC/CONTACTOMORPHIC ?

· Y IS TIGHT IF IT IS NOT OVERTWISTED

 $\mathcal{F}_{st} = km(dz - ydx)$ 301 = kn (cos(1) dz + r sin(r) d1) ARE 3+ & 30+ ISOTOPIC/CONTACTOMORPHIC ? BENNEQUIN (1982): NO! CONSIDER $D = \{\pi \leq 2\pi\} \times \{0\}$ DEF, D - (N,3) IS AN OVERTWISTED DISK IF TD = 3 3 RMK ENOUGH TWISTING OF 5 ALONG DO WRT D IS O DEF. . 3 IS OVERTWISTED IF 3 CONTAINS AN OVERTWISTED DISK

STANDARD CONTACT STRUCTURE OVERTWISTED CONTACT STRUCTURE

 \implies $\chi \approx \chi^{\circ}$

• ETNYRE: - I(2,3,5) ADMITS NO TIGHT CONTACT STRUCTURES

TIGHT CONTACT STRUCTURES

- · GIROUX · J @ -LY HANY 3-HANIFOLDS WITH @-LY MANY
- · ELIASHBERG: S³ ADMITS A UNIQUE TIGHT CONTACT STRUCTURE

**** TIGH CONTACT STRUCTURES ARE HARDER TO CLASSIFY

OVERTWISTED CONTACT STRUCTURES CAN BE UNDERSTOOD THROUGH ALGEBRAIC TOPOLOGICAL INVARIANTS : de, de

IS REPRESENTED BY A(N OVERTWISTED) CONTACT STRUCTURE

THM (LUTZ - MARTINEZ) ANY HONOTOPY CLASS OF PLANEFIELDS

UVERTWISTED CONTACT STRUCTURES

RECOGNISING OVERTWISTED CONTACT STRUCTURES

DIS <u>CONVEX</u>: X-32 IS A CONTACT VECTORFIELD, X ¢ D

$$\Gamma = \left\{ \frac{2}{2} \in \mathcal{F} \right\} = \left\{ \gamma = \pi \right\} \times \left\{ O \right\}$$

$$3_{07} = km (cos(n) dz + r sin(n) dv)$$

THN (GIROUX'S CRITERION): $\Sigma \hookrightarrow (H, \mathfrak{F})$ CONVEX SURFACE ADMITS A TIGHT NEIGHBOURHOOD $(N(\Sigma), \mathfrak{F}|_{N(\Sigma)})$ IFF $\cdot \Sigma = S^2$ & $|\Gamma| = 1$ $\cdot Z \neq S^2$ & NO COMPONENT OF Γ BOUNDS A DISC

CLASSIFICATION OF TIGHT CONTACT STRUCTURES

THM (ELIASHBERG): D³ ADMITS A UNIQUE TIGHT CONTACT STRUCTURE WITH CONNECTED DIVIDING CURVE ON S¹:

THIS RESULT ALLOWS US TO PROVE OTHER UNIQUESS RESULTS

E.G. : M = D² × S⁴ GIVEN ANY CONTACT STRUCTURF & ON H

• STEP 4: BY THE LEGENDRIAN REALISATION PRINCIPLE

WE CAN ASSUME OD IS LEGENDRIAN

CLASSIFICATION OF TIGHT CONTACT STRUCTURES

THM (ELIASHBERG): D' ADMITG A UNIQUE TIGHT CONTACT STRUCTURE WITH CONNECTED DIVIDING CURVE ON 5':

THIS RESULT ALLOWS US TO PROVE OTHER UNIQUESS RESULTS

E.G. : M = D² × S⁴ GIVEN ANY CONTACT STRUCTURF & ON H

• <u>STEP 4</u>: BY THE LEGENDRIAN REALISATION PRINCIPLE WE CAN ASSUME 3D IS LEGENDRIAN • <u>STEP 2</u>: ISOTOPE D REL. 3 TO BE CONVEX :

THE DIVIDING CURVE ON D IS A SINGLE ARC

CLASSIFICATION OF TIGHT CONTACT STRUCTURES

THM (ELIASHBERG): D' ADMITS A UNIQUE TIGHT CONTACT STRUCTURE WITH CONNECTED DIVIDING CURVE ON 5:

THIS RESULT ALLOWS US TO PROVE OTHER UNIQUESS RESULTS

E.G. : M = D² × S⁴ GIVEN ANY CONTACT STRUCTURF & ON H

• STEP 4: BY THE LEGENDRIAN REALISATION PRINCIPLE WE CAN ASSUME OD IS LEGENDRIAN STEP 2: ISOTOPE D REL. > TO BE CONVEX: THE DIVIDING CURVE ON D IS A SINGLE ARC • STEP 3 : CUT M ALONG D

<u>CLASSIFICATION</u> OF TIGHT CONTACT STRUCTURES

THM (ELIASHBERG): D' ADMITS A UNIQUE TIGHT CONTACT STRUCTURE WITH CONNECTED DIVIDING CURVE ON 5':

THIS RESULT ALLOWS US TO PROVE OTHER UNIQUESS RESULTS

E.G. : M = D² × S⁴ GIVEN ANY CONTACT STRUCTURF & ON H • STEP 4: BY THE LEGENDRIAN REALISATION PRINCIPLE WE CAN ASSUME 20 IS LEGENDRIAN • STEP 2: ISOTOPE D REL. > TO BE CONVEX : THE DIVIDING CURVE ON D IS A SINGLE ARC · STEP 3 ; CUT H ALONG D • STEP4 : ROUND THE EDGES : WE GET A D WHICH HAS A UNIQUE CONTACT STRUCTURE 3. ⇒ ANY & CAN BE OBTAINED FROM 3.

BY GLUEING => 3 IS UNIQUE TOO

CLASSIFICATION OF TIGHT CONTACT STRUCTURES

THM (ELIASHBERG): D' ADMITS A UNIQUE TIGHT CONTACT

STRUCTURE WITH CONNECTED DIVIDING CURVE ON 5:

ADNITS A UNIQUE TIGHT CONTACT STRUCTURE

• WHAT DID WE USE IN THE PROOF?

CLASSIFICATION OF TIGHT CONTACT STRUCTURES

THM (ELIASHBERG): D' ADMITS A UNIQUE TIGHT CONTACT

STRUCTURE WITH CONNECTED DIVIDING CURVE ON 5:

ADNITS A UNIQUE TIGHT CONTACT STRUCTURE

- WHAT DID WE USE IN THE PROOF?
- THAT DONT = 2 THUS THE DIVIDING CURVE ON D WAS WELL DEFINED

CLASSIFICATION OF TIGHT CONTACT STRUCTURES

THM (ELIASHBERG): D³ ADMITS A UNIQUE TIGHT CONTACT STRUCTURE WITH CONNECTED DIVIDING CURVE ON S¹:

E.G. 3

ADNITS A UNIQUE TIGHT CONTACT STRUCTURE

- WHAT DID WE USE IN THE PROOF?
- THAT | DONT | = 2 THUS THE DIVIDING CURVE ON D WAS WELL DEFINED
- & THAT WE GOT AFTER CUTTING AND ROUNDING

DEF: PRODUCT DISC DECONPOSABLE

• WHAT DID WE USE IN THE PROOF?

ADNITS A UNIQUE TIGHT CONTACT STRUCTURE

STRUCTURE WITH CONNECTED DIVIDING CURVE ON 52:

THM (ELIASHBERG): D' ADMITS A UNIQUE TIGHT CONTACT

CLASSIFICATION OF TIGHT CONTACT STRUCTURES

()NA()CELI--DECOMPOSITIONS

HEEGAARD DECOMPOSITIONS

CONTACT HANDLES

CONTACT HANDLES

ON THE h

CONTACT HANDLEDECOMPOSITION

ATTACHING CONTACT HANDLES

WE CAN CONSTRUCT CONTACT MANIFOLDS BY SUCCESIVELY GLUING HANDLES ALONG 30" × 0" :

 $\frac{\mathbf{i} - HANDLE}{\partial \mathbf{h}^{i} = \partial \mathbf{D}^{i} =$

CONTACT HANDLEBODY

O-HANDLE U SONE A-HANDLES

<u>E.G.</u>

NOTE: CONTACT HANDLEBODIES ARE PRODUCT DISC DECOMPOSABLE

RECALL: A PRODUCT DISC DECOMPOSABLE HANDLEBODY & ADMITS A UNIQUE TIGHT CONTACT STRUCTURE WITH DIVIDING CURVE P ON QU.

THUS

THM: A PRODUCT DISC DECOMPOSABLE HANDLEBODY U WITH TIGHT CONTACT STRUCTURE 3 15 A CONTACT HANDLEBODY

REARRANGING CONTACT HANDLES

JUST AS IN THE SHOOTH CASE

- IN A CONTACT HANDLE DECOMPOSITION ONE CAN ASSUME THAT:
 - CONTACT O-1'S ARE ATTACHED FIRST
 - CONTACT 3-13 ARE ATTACHED LAST

REARRANGING CONTACT HANDLES

JUST AS IN THE SHOOTH CASE

IN A CONTACT HANDLE DECOMPOSITION ONE CAN ASSUME THAT:

- CONTACT O-1'S ARE ATTACHED FIRST
- CONTACT 3-13'S ARE ATTACHED LAST

BUT CONTACT 1-h'S CANNOT ALWAYS BE ATTACHED BEFORE CONTACT 2-h'S

FROM THE TOP

WILL SEE: BYPASSES ARE BASIC BUILDING BLOCKS OF CONTACT STRUCTURES ON Z * I

THE ABOVE PAIR OF CONTACT $1-\sqrt{2}-b$ CAN BE ATTACHED TO ANY CONVEX SURFACE (Σ, Γ) ALONG ANY ARC C INTERSECTING Γ AS $-\frac{c}{c}$

FROM THE TOP

CONVEX SURFACE THEORY

O-PARAHETER

RECALL (GIROUX) : CONVEX SURFACES ARE C - GENERIC

I - INVARIANT

THN (GIROUX REPHRASED BY HONDA) ANY CONTACT

STRUCTURE ON ZXI IS CONTACTONORPHIC TO

A STACK OF BYPASS SLICES

CONVEX SURFACE THEORY

O-PARAHETER

RECALL (GIROUX): CONVEX SURFACES ARE C - GENERIC

THN (GIROUX REPHRASED BY HONDA) ANY CONTACT

STRUCTURE ON ZXI IS CONTACTONORPHIC TO

A STACK OF BYPASS SLICES

NORE GENERALLY WE CAN THINK OF THIS AS

GENERICITY STATEMENT FOR 1-PARAMETER FAMILIES :

THM (GIROUX, COLIN, REPHRASED BY HONDA) ANY 1- PARAMETER
FAMILY OF SURFACES (
$$\Sigma_{4}$$
)₄ ϵ_{0} , i_{1} WITH Σ_{0} , Σ_{1} CONVEX
CAN BE ISOTOPED TO (Σ_{4}^{2})₄ ϵ_{0} , i_{1} SO THAT
• $Z_{4} = Z_{4}^{1}$ NEAR $4 = 0$ & A
• $Z_{4}^{2} = Z_{4}^{1}$ NEAR $4 = 0$ & A
• $Z_{4}^{2} = C$ CONVEX EXCEPT AT DISCRETE TIMES $\{4_{i_{1}}, ..., 4_{k_{k}}\} \in [0, 1]$
• $Z_{4_{k}-\epsilon}^{2}$ & $Z_{4_{k}+\epsilon}^{2}$ COBOUND A BYPASS SLICE ($i = A... k$)

I ~ INVARIANT

EXISTENCE OF (ONIA())HEEGAARD Company DECOMPOSITIONS

CONTACT HEEGAARD DECOMPOSITION

PROOF (LICATA - V)

THM (GIROUX) ANY CONTACT 3-MANIFOLD (N,3) ADMITS A

CONTACT HEEGAARD DECOMPOSITION

PROOF (LICATA - V)

STEP 1 : TAKE ANY SHOOTH HEEGAARD

DECOMPOSITION OF M : M = U UV

THM (GIROUX), ANY CONTACT 3-MANIFOLD (N,3) ADMITS A

CONTACT HEEGAARD DECOMPOSITION

PROOF (LICATA - V)

STEP 1 : TAKE ANY SHOOTH HEEGAARD

DECOMPOSITION OF M: M=UUV

STEP 2 : TAKE SPINES Ky CV & Ky CV

N(Ky)

THM (GIROUX): ANY CONTACT 3-MANIFOLD
$$(N, \chi)$$
 ADMITS A
CONTACT HEEGAARD DECOMPOSITION
PROOF (LICATA - V)
STEP 4: X = M - (N(Ku) UN(Kv)) \cong Z * T \Rightarrow $\Im|_X$
CAN BE WRITTEN AS A STACK
OF BYPASS - SLICES \cong $h_1^A U h^2$
(AWAY FROM THE HANDLES \Im IS I-INVARIANT)
STEP 5: USE THIS FLOW TO EXTEND THE HANDLES
CONSIDER: $\hat{U} = N(K_u) U (Uh_{L}^A)$
CONTACT HANDLEBODY
 $\Rightarrow \hat{U}$ IS A CONTACT HANDLEBODY
WPSIDE DOWN: $\hat{V} = M \setminus \hat{U} \cong N(K_V) U (Uh_{L}^A)$ IS A CONTACT HANDLEBODY
 $\Rightarrow H = \hat{U} \cup \hat{V}$ IS A CONTACT HEEGAARD DECOMPOSITION

OPEN BOOK DECOMPOSITIONS

OPEN BOOK DECOMPOSITIONS

DEF: PAIR $(B_{1}\pi)$, where - $B \hookrightarrow M$ enbedded A-MANIFOLD: <u>BINDING</u> - π : M-B \longrightarrow S⁴ TIBRATION SUCH THAT $\forall t \in S^{4} \quad S_{t} := \overline{\pi^{-4}(t)}$ IS A SEIFERT SURFACE FOR B $\Rightarrow \& \text{ ON N}(B) \cong B \times D^{2} \quad \pi = \text{ANGLE}$ DEF: $S_{t} := \pi^{-4}(t)$ ARE THE <u>PAGES</u> OF (B,π)

OPEN BOOK DECOMPOSITIONS

DEF : PAIR (BIT), WHERE - B - M ENBEDDED A-MANIFOLD : BINDING - T: M-B - S' FIBRATION SUCH THAT + Y t E S += T- (t) IS A SEIFERT SURFACE FOR B +& ON N(B) = $B \times D^2$ T = ANGLEDEF: St'= x-1(f) ARE THE PAGES OF (B, x) <u>E.G.</u> : $M = S^{3} = \{|z|^{2} + |w|^{2} = 4\} \leq C^{2}$ B $B = \{|z| = 0\} \cong S^{4}, \pi: S^{3} \setminus B \longrightarrow S^{4}$ St $(z,w) \longmapsto \frac{z}{|z|}$

OPEN BOOK DECOMPOSITIONS

THM (ALEXANDER): ANY 3-MANIFOLD ADMITS AN OPEN BOOK DECOMPOSITION

PROOF LATER

THM (ALEXANDER): ANY 3-MANIFOLD ADMITS AN OPEN BOOK DECOMPOSITION

PROOF LATER

ABSTRACT OPEN BOOKS

FIX S:= S_o & LOOK AT THE FIRST RETURN - MAP OF $\pi: H - B \rightarrow S' \longrightarrow GET (S, Y)$ where

- S IS AN ORIENTED SURFACE WITH BOUNDARY

~ & \$ \$ 555 HOMEOMORPHISM THAT FIXES N(∂s)

N(DARY N(DS) S=So

DEF: THE PAIR (S, Y) IS AN ABSTRACT OPEN BOOK

ABSTRACT OPEN BOOKS

FIX S:= S, & LOOK AT THE FIRST RETURN - MAP OF $\pi: H - B \rightarrow S' \longrightarrow GET(S, Y)$ where

- S IS AN ORIENTED SURFACE WITH BOUNDARY

~ & \$ \$555 HOMEOMORPHISM THAT FIXES N(35)

DEF: THE PAIR (S, Y) IS AN ABSTRACT OPEN BOOK

E.G. : THE PREVIOUS EXAMPLE GIVES

ALONG C

ABSTRACT OPEN BOOKS

(THIS DETERMINES & UP TO ISOTOPY) <u>DEF</u>: THE ABOVE MAP IS A <u>RIGHT HANDED DEHN-TWIST</u>

 $\frac{DEF}{THE PAIR} (S, \Psi) IS AN ABSTRACT OPEN BOOK$ E.G.: THE PREVIOUS EXAMPLE GIVES $S = \bigcup_{a} S^{a} \times I$ What happing a to $\Psi(a)$

TIX S:= S. & LOOK AT THE FIRST RETURN - MAP

- S IS AN ORIENTED SURFACE WITH BOUNDARY

~ & \$ \$555 HOMEOMORPHISM THAT FIXES N(35)

OF $\pi: H - B \rightarrow S' \longrightarrow GET(S, Y)$ WHERE

ABSTRACT OPEN BOOKS

CONVERSALY AN ABSTRACT OB (S,4) DETERMINES A 3-MANIFOLD M TOGETHER WITH AN OPEN BOOK DECOMPOSITION

PROOP: • TAKE THE MAPPING TORUS OF Ψ :

$$M_{\Psi} = \frac{S \times I}{(x, A)} \sim (\Psi(x), 0)$$
(AS Ψ FIXES 35) $\Im M_{\Psi} = \Im S \times S^{A}$

ABSTRACT OPEN BOOKS CONVERSALY AN ABSTRACT OB (S,4) DETERMINES A 3-MANIFOLD M TOGETHER WITH AN OPEN BOOK DECOMPOSITION

TROOP: • TAKE THE MAPPING TORUS OF V:

$$M_{\Psi} = \frac{S \times I}{(x, \Lambda)} \sim (\Psi(x), 0)$$

$$\cdot (AS \ \Psi \ FIXES \ \Im S) \ \Im M_{\Psi} = \Im S \times S^{\Lambda}$$

$$M := \frac{H_{\Psi}}{(x,t)} \times COS$$

$$\frac{HEN}{B} = \frac{S}{2}$$

$$\begin{array}{ccc} & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

OPEN BOOKS & CONTACT STRUCTURES

DEF: AN OBD (B,T) SUPPORTS A CONTACT STRUCTURE IF

OPEN BOOKS & CONTACT STRUCTURES

DEF: AN OBD (B,T) SUPPORTS A CONTACT STRUCTURE IF

WE WILL HAVE A MORE TOPOLOGICAL DEF LATER

CONSTRUCTION (THURSTON - VINKENKEMPLER): ANY OBD SUPPORTS A CONTACT STRUCTURE THAT IS UNIQUE UP TO ISOTOPY

IDEA: • 1 - PARAHETER FANILY OF AREA FORM (Bt) ~ ~ ~ & = Bt + Kdt WHERE K>O

• + LOCAL CONSTRUCTION NEAR BINDING

SRNI - LECTURE 3

PROOF OF GIROUX CORRESPONDENCE

- OPEN BOOK DECONPOSITIONS & CONTACT HEEGAARD SPLITTINGS
- STABILISATION
- STATEMENT OF GIROUX CORRESPONDENCE
- IDEA OF PROOF

-FURTHER DIRECTIONS

UNIVERSITY OF VIENNA

JOINT WORK WITH JOAN LICATA

HE GIROUX CORRESPONDENCE VIA CONVEX SURFACES VERA VÉRTESI

LECTURE 3

PROOF OF GIROUX'S CORRESPONDENCE

- OPEN BOOK DECONPOSITIONS & CONTACT HEEGAARD SPLITTINGS

- STABILISATION

- STATEMENT OF GIROUX CORRESPONDENCE
- IDEA OF PROOF -FURTHER DIRECTIONS (B,π) (B,π) (B,π)

OPEN BUUKS & CONTAC HEEGAARD (DECOMPOSITIONS

OPEN BOOK - & CONTACT HEEGAARD DECOMPOSITIONS

GIVEN AN OBD (B,TC)

GIVEN AN OBD $(B,\pi) \longrightarrow CONSIDER M = U \cup_{z} V$ WHERE $U = \pi^{-1} ([0, \frac{1}{2}])$ $V = \pi^{-1} ([\frac{1}{2}, \frac{1}{2}])$

HERE $\Sigma = S_0 \cup S_4$

TROP : U & V ARE HANDLEBODIES

GIVEN AN OBD $(B,\pi) \longrightarrow CONSIDER M = U \cup_{\chi} V$ where $U = \pi^{-1} ([0, \frac{1}{2}])$ $V = \pi^{-1} ([\frac{1}{2}, \frac{1}{2}])$

HERE $\Sigma = S_0 \cup S_4$

 PROP:
 U & V ARE HANDLEBODIES

 PROOF:
 FOR U:

• LET a, j... ja_{2g+b} BE ARCS ON S SUCH THAT S- ua; ≅ D²

GIVEN AN OBD $(B,\pi) \longrightarrow CONSIDER M = U \cup_{Z} \vee WHERE$ $U = \pi^{-1} ([0, \frac{1}{2}]) \qquad \forall \pi^{-1} ([\frac{1}{2}, 1])$

HERE $\Sigma = S_0 \cup S_4$

<u>**PROP</u></u>: U & V ARE HANDLEBODIES <u>PROOF**</u>: <u>FOR U</u>:</u>

• LET a, j... ja_{2g+b} BE ARCS ON S SUCH THAT S- ua; = D²

T

THEN $D_{i} := \alpha_{i} \times [0, \frac{1}{2}] / =$

- C

GIVEN AN OBD $(B,\pi) \longrightarrow$ CONSIDER $M = U \cup V$ where $U = \pi^{-1} \left(\left[0, \frac{1}{2} \right] \right) \qquad \forall = \pi^{-1} \left(\left[\frac{1}{2}, \frac{1}{2} \right] \right)$ 0=4 1/2

HERE $\Sigma = S_0 \cup S_4$

TROP : U & V ARE HANDLEBODIES PROOF: FOR U:

• LET a, , a 29+6 BE ARCS ON S SUCH THAT S- Uai = D'

• & $U - U D_{i} = (S - U a_{i}) \times [0, \frac{1}{2}] \cong D^{2} \times [0, \frac{1}{2}] \cong D^{3}$

GIVEN AN OBD $(B,\pi) \longrightarrow$ CONSIDER $M = U \cup V$ where $U = \pi^{-1} ([0, \frac{1}{3}]) \qquad \forall = \pi^{-1} ([\frac{1}{2}, 1])$ 0=1 1/2

HERE $\Sigma = S_0 \cup S_4$

TROP : U & V ARE HANDLEBODIES PROOF: FOR U:

• LET a, , a 29+6 BE ARCS ONS (SUCH THAT S- Ua; 2 D

• & $U - U D_i = (S - U a_i) \times [0, \frac{1}{2}] \cong D^2 \times [0, \frac{1}{2}] \cong D^3$

⇒ U IS A HANDLEBODY

GIVEN AN OBD $(B,T) \longrightarrow CONSIDER M = U \cup_{Z} V$ WHERE $U = T^{-1} ([0, \frac{1}{2}])$ $V = T^{-1} ([\frac{1}{2}, \frac{1}{2}])$

HERE $\Sigma = S_0 \cup S_1$

 $\frac{PROP}{VRE} : U & V ARE HANDLEBODIES$ $\frac{NOREOVER}{U, \Sigma, \Gamma = B} IS$ $\frac{PRODUCT DISC DECOMPOSABLE}{DISCS D: SUCH THAT}$ $\frac{1}{V - UD_{i} \cong D^{3}}{V = D_{i} \cap \Gamma = 2 \quad \forall i$

WARNING : NEED I ON Z

O-- Boon D-

WE HAVE SEEN: AN OPEN BOOK DECOMPOSITION DEFINES A HEEGAARD DECOMPOSITION WITH PRODUCT DECOMPOSABLE HANDLEBODIES

OPEN BOOK DECOMPOSITIONS ~> HEEGAARD DECOMPOSITIONS
GIVEN AN OBD (B,T) ~> CONSIDER
$$M = U \cup_{z} V$$
 where

 $U = \pi^{-1} \left(\left[0, \frac{1}{2} \right] \right) \qquad \forall = \pi^{-1} \left(\left[\frac{1}{2}, \frac{1}{2} \right] \right)$

OPEN BOOK - & CONTACT HEEGAARD DECONPOSITIONS

THM: AN OPEN BOOK DECOMPOSITION DEFINES A HEEGAARD DECOMPOSITION WITH PRODUCT DECOMPOSABLE HANDLEBODIES

$$(B,\pi) \longrightarrow M = U \cup_{(\Sigma,\Gamma)} V$$

LET'S LOOK AT THE CONTACT STRUCTURE SUPPORTED BY (B,T.)

THM (TORISU): THE SURFACE Z IS CONVEX WITH DIVIDING CURVE P, THE CONTACT STRUCTURES 3/4 & 3/4 ARE TIGHT, OPEN BOOK - & CONTACT HEEGAARD DECOMPOSITIONS

THM: AN OPEN BOOK DECOMPOSITION DEFINES A HEEGAARD DECOMPOSITION WITH PRODUCT DECOMPOSABLE HANDLEBODIES

$$(B,\pi) \longrightarrow M = U \cup_{(\Sigma,\Gamma)} V$$

LET'S LOOK AT THE CONTACT STRUCTURE SUPPORTED BY (B,T)

THM (TORIS	÷u):	ТНЕ	SURFACE	Ζ	15	CONVE	X	WIT	H DI	VIDING
CURVE	ч.	THE	CONTACT	ST	RUCT	URES	3	4 ⁸	۶lv	ARE
TIGHT,										

50:
$$(N, \mathcal{G}_u)$$
 & (V, \mathcal{G}_v) ARE CONTACT HANDLEBODIES

THUS $M = U \cup_{(\Sigma, \Gamma)} \vee IS A CONTACT HEEGAARD DECOMPOSITION$

OPEN BOOK - & CONTACT HEEGAARD DECOMPOSITIONS

THM: AN OPEN BOOK DECOMPOSITION DEFINES A HEEGAARD DECOMPOSITION WITH PRODUCT DECOMPOSABLE HANDLEBODIES

$$(B, \pi) \longrightarrow M = U \cup_{(\Sigma, \Gamma)} V$$

LET'S LOOK AT THE CONTACT STRUCTURE SUPPORTED BY (B,T)

THM (TORISU)	: THE	SURFACE	Σ	15	CONVE	X V	リエト	DIV	IDING
CURVE 7	, THE	CONTACT	STI	KUCT	URES	34	&	3 _V	ARE
TIGHT,									

50: $(N_1 g_u) \& (V_1 g_v)$ ARE CONTACT HANDLEBODIES

THUS	M = 1	ι ο (Σ,Γ)	VISA	CONTA	CT HEE	GAARD	DECOM	DSITION
THIS	GIVES	RISE	TO A	N EQUIVA	LENT	DEFINIT	100:	
DEF :	315	SUPPO	RTED	34 THE	OPEN	BOOK	(B,X)	1F
тн	e hee	GARD	DECON	POSITIC	DN DEF	INED B	ву (Вл	A ZI (
60	NTACT	HEEG	AARD D	ECOMPO	SITION			

HEEGAARD DECOMPOSITIONS ~ OPEN BOOK DECOMPOSITIONS

$$\frac{PROP}{(U,\Gamma)} \xrightarrow{PRODUCT} DISC DECOMPOSABLE HANDLEBODY$$

$$\Rightarrow U = S \times T/(x,t) \sim (x,t^{2}) \times C \partial S, t/t^{2} \in T$$
SUCH THAT $\partial U = S \times O \cup_{\Gamma} S \times A$

$$\frac{R}{r} = \partial S/_{r}$$

IDEA INDUCTION ON THE # OF PRODUCT DISCS

HEEGAARD DECOMPOSITIONS ~ OPEN BOOK DECOMPOSITIONS

$$PROP$$
, (U,Γ) PRODUCT DISC DECOMPOSABLE HANDLEBODY
 $\Rightarrow U = S * T/(x,t) ~ (x,t^{2}) x \in \partial S, t,t^{2} \in T$
SUCH THAT $\partial U = S * O \cup_{\Gamma} S * A$
 $g \Gamma = \partial S/_{\sim}$

GIVEN A CONTACT HEEGAARD DECONPOSITION $M = U U_{(\Sigma, \Gamma)} V$

HEEGAARD DECOMPOSITIONS ~ OPEN BOOK DECOMPOSITIONS

$$PROP$$
, (U, Γ) Product disc decomposable handlebody
 $\Rightarrow U = 5 \times T/(x, t) \sim (x, t^{2}) \times C \partial S, t, t^{2} \in T$
Such that $\partial U = 5 \times O \cup_{\Gamma} S \times A$
 $g \Gamma = \partial S/_{\sim}$

GIVEN A CONTACT HEEGAARD DECONPOSITION M=U U (E,P) 5×0 - 5× 1/2 BY <u>**PROP**</u> $U = S \times [0, \frac{1}{2}]$ $\partial U = \Sigma = R_{+} U_{p} - R_{-}$ 1 1 $V = S \times [\frac{1}{2}, \Lambda] \quad \partial V = -\Sigma = -R_{+} \cup_{P} R_{-}$ -5×1 5×1/2 \Rightarrow GLUES TO A FULL FIBRATION (B, π) \mathcal{N} GIVEN BY PROJECTION ONTO [0,2] U[1/2,1]

OPEN BOOK - & CONTACT HEEGAARD DECONPOSITIONS

SO WE GET A ONE - TO - ONE CORRESPONDANCE

DECOMPOSITIONS OF (M,3) (CONTACT HEEGAARD JECOMPOSITIONS OF (M,3) ISOT

SO WE CAN WORK WITH WHICHEVER IS MORE CONVENIENT

RECALL :

THM : FVERY CONTACT MANIFOLD (M, S) ADMITS A

OPEN BOOK DECOMPOSITION

CONTACT HEEGAARD DECOMPOSITION

COR: FVERY CONTACT MANIFOLD (M, 5) ADMITS AN

STABILISATION

HEEGAARD DECOMPOSITIONS - SHOOTH - CONTACT

OPEN BOOK DECOMPOSITIONS

STABILISATION OF HEEGAARD DECOMPOSITIONS

H=UUV HEEGAARD DECOMPOSITION

· C ARC ON Z

U

٧

STABILISATION OF HEEGAARD DECOMPOSITIONS

H=UUV HEEGAARD DECOMPOSITION

- · C ARC ON Z
- · ISOTOPE C INTO V

~ - U':= U U N(c) IS A HANPLEBODY U

STABILISATION OF HEEGAARD DECOMPOSITIONS

H=UUV HEEGAARD DECOMPOSITION

- · C ARC ON Z
- · ISOTOPE C INTO V

$$\sim$$
 - $U' := U \cup N(c)$ is a HANPLEBODY U
- $V' := V \setminus N(c)$ is also a HANPLEBODY
- $z'' := \partial U'$

STABILISATION OF CONTACT HEEGAARD DECOMPOSITIONS

(M, 3) CONTACT 3-MANIFOLD

 $M = U \cup (\mathbf{r}, \mathbf{r}) \vee CONTACT HD$

· C LEGENDRIAN ARC ON Z

WITH TW2(3, TZ) = - 1/2

U

CONTACT DESTABILISATION

ĥ

ນີ

D

NONODROHIES CAN ALSO BE READ OFF & WE

GET

5

THE

(RE)STATEMENT $\left(\frac{1}{S} \right) \left(\frac{1}{S} \right)$ (ORPESPONDENCE

GIROUX CORRESPONDENCE - REPHRASED

GIROUX CORRESPONDENCE - REPHRASED

FROM SHOOTH TOPOLOGY:

IDEA OF PROOF

WHAT DOWE WANT TO PROVE ?

WHAT DOWE WANT TO PROVE ?

HORE PRECISELY : GIVEN TWO CONTACT HEEGAARD DECOMPOSITIONS

К

WHAT DO WE WANT TO PROVE ?

HORE PRECISELY : GIVEN TWO CONTACT HEEGAARD DECOMPOSITIONS

тн	EN	THER	E	15	A	SEQUENCE
OF	¢C	NTA CT	- 5	TA	BIL	ISATION S
&	CON	ΤΔ ΔΤ	DE	ST	AB	ILISATIONS
CONNECTING THEY						

IN THREE STEPS WE HAKE THEN MORE & MORE SIMILAR

REALISE THESE STABILISATIONS WITH CTCT STABILISATIONS ON EACH \mathcal{H}_{4} $\mathcal{$

ARE SNOOTHLY ISO TOPIC

$$\frac{\text{STEP } 2}{\text{H}_{4}}$$

$$\frac{\text{H}_{4}}{\text{H}_{4}}$$

$$\frac{1}{\text{SMOOTHLY}}$$

APPLY THE EXISTENCE PROOF

. TAKE THE STANDARD NEIGHBOURHOOD N(Ku), N(Kv)

TAKE THE STANDARD NEIGHBOURHOOD N(Ku), N(Kv)
 UN(Ku) & VN(Kv) ARE ≅ Z₄ × I HONDA = STACKS OF BYPASSES

								E-GENVRIKN
STAB	. W	E	CAN	ASSUNE	$K_{\mu} = K_{\mu}$	& Kr	= K ^V ,	

FUCHS, TABACHNIKOV: AFTER SUFFICIENTLY MANY | ECENDRIAN

• TAKE LEGENDRIAN SKELETONS FOR THE HANDLEBODIES

TAKE THE STANDARD NEIGHBOURHOOD N(Ku), N(Kv)
 UN(Ku) & VN(Kv) ARE ≅ Z₄ × I HONDA = STACKS OF BYPASSES

TUCHS ~ T	TABACI	INIKOV	ATTER	SUFFICIE	NTLY	MANY	LEGENDRIAN
STAB	, WE	CAN	ASSUNE	$K_{u} = K_{u}$	& K _V =	κ _γ ,	

• TAKE LEGENDRIAN SKELETONS FOR THE HANDLEBODIES

STEP 2	$K_{v} = K_{v}$
$H = U_{4} \cup_{z_{4}} V_{4} \qquad H = U_{4}^{2} \cup_{z_{4}} V_{1}^{2}$	
WHERE Z, & Z, ARE SNOOTHLY ISOTOPIC	$\left[\begin{array}{c} & \xrightarrow{150}{} \\ & \xrightarrow{1} \\ & 1$
APPLY THE EXISTENCE PROOF	$K_u = K_u$
• TAKE LEGENDRIAN SKELETONS	FOR THE HANDLEBODIES
TUCHS - TABACHNIKOV : ATTER SU	FFICIENTLY MANY LEGENDRIAN

. TAKE THE STANDARD NEIGHBOURHOOD N(Ku), N(Kv)

STAB. WE CAN ASSUNE $K_{y} = K_{u'}$ & $K_{v} = K_{v'}$

• UN(Ku) & VN(KV) ARE PZAT HONDA = STACKS OF BYPASSES

$$\begin{array}{c} & U_{2}^{\prime} := N(U_{K}) \cup (1 - h^{\prime}s) \\ \\ & \swarrow \\ & H_{2} \\ \end{array} \end{array} \\ \begin{array}{c} & H_{2} \\ & H_{2} \\ \end{array} \end{array} \\ \begin{array}{c} & H_{2} \\ & H_{2} \\ & H_{2} \\ \end{array} \end{array}$$

- . TAKE THE STANDARD NEIGHBOURHOOD N(Ku), N(Kv) · UN(Ku) & VN(KV) ARE = ZA XI = STACKS OF BYPASSES · EXTEND THE HANDLES $V_{a} = M \setminus U_{a}$

FUCHS - TABACH	NIKOV :	ATTER	SUFFICIE	ENTLY	MANY	LEGENDRIAN
STAB, WE	CAN A	SSUNE	$K_{u} = K_{u}$	& K _V =	= Ky'	

APPLY THE EXISTENCE PROOF Κ., • TAKE LEGENDRIAN SKELETONS FOR THE HANDLEBODIES

Kv – κ. STEP 2 Ke K. $\Sigma_{A} \stackrel{1507}{\longleftrightarrow} \Sigma_{A}$ WHERE Z & Z, ARE SNOOTHLY ISD TOPIC

$\frac{\text{STEP } 2}{V \setminus N(K_u)} & V \setminus N(K_v) \text{ ARE } 2 Z_4 \times I$ $\frac{\text{HONDA}}{\text{MONDA}} = \text{STACKS OF BYPASSES}$ $\cdot \text{EXTEND THE HANDLES}$ $U_2 := N(U_K) \cup (A - h^2s) V_2 = M \setminus U_2$ $\longrightarrow M = U_2 \cup V_2 \& M = U_2^2 \cup V_2$	$K_{v} = K_{v}$ $Z_{a} \stackrel{150T}{\longleftrightarrow} Z_{a}$ $K_{u} = K_{u}$
H_2 H_2	
<u>PROP</u> (L-V) \mathcal{H}_{1} CAN BE OBTAINED SEQUENCE OF CONTACT S	TAB & DESTAB
BEFORE NEXT STEP NOTICE	
$\mathcal{H}_{2} = \hat{\mathcal{H}} (U_{k}, V_{k}, B) \qquad \mathcal{H}_{2} = \hat{\mathcal{H}} (U_{k}, V_{k}, B)$	$\lambda^{\kappa}, \lambda^{\kappa}, \mathcal{B},)$
WHERE B&B' ARE DIFFERENT 3 N- (N(UK)UN(VK) AS BYPASS	DECOMPOSITIONS OF STACKS

TROM TOP

Ţ

COMMUTATION

TRIVIAL BYPASS

TROM TOP

$\frac{\text{STEP 3}}{\text{M}_{2}} = \hat{\mathcal{K}} \left(U_{k}, V_{k}, \mathcal{B} \right) \hat{\mathcal{K}}_{2} = \hat{\mathcal{K}} \left(U_{k}, V_{k}, \mathcal{B}^{2} \right)$ $\text{WHERE } \mathcal{B} \mathcal{K} \mathcal{B}^{2} \text{ARE TWO}$ $\text{BYPASS - DECOMPOSITIONS}$ $\text{OF } \mathcal{S} \mid M - \left(N(U_{k}) \cup N(V_{k}) \right)$ $\xrightarrow{\text{TIAN}} \mathcal{B} \mathcal{K} \mathcal{B}^{2} \text{ARE } \text{RELATED}$ $\text{VIA } \text{BYPASS } \text{MOVES}$ $\mathcal{B} = \mathcal{B}_{0} \rightarrow \mathcal{B}_{A} \rightarrow \dots \rightarrow \mathcal{B}_{k} = \mathcal{B}^{2}$	$K_{u} = K_{v}$
<u>THM</u> (L-Y): BYPASS HOVES ON Z×I (STAB & DESTAB OF Û	CORRESPOND TO CONTACT
$\hat{\mathcal{H}}(U_{K}, V_{K}, \mathcal{B}) \xrightarrow{\text{STAB+DESTAB}} \hat{\mathcal{H}}(U_{K}, V_{K}, \mathcal{B}_{1}) \rightarrow \mathcal{H}_{2}$	$ \xrightarrow{\text{STAB+DESTAB}} \hat{\mathcal{X}}(U_{K}, V_{K}, \hat{\mathcal{B}}) $

SUMMARY

SUMMARY

-> & & K' ARE RELATED VIA A SEQUENCE DF CONTACT STAB. & DESTAB

FURTHER DIRECTIONS

TEELS LIKE END OF A LONG STORY BUT AS ALWAYS THERE IS A LOT TO DO:

· (HOPEFULLY) NINOR ISSUE · COMMON STABILISATION VS. SEQUENCE OF (DE)STABILISATIONS

. HOW MANY STABILISATIONS DO WE NEED?

- ETNYRE: DOES EVERY CONTACT STRUCTURE HAVE A GENUS 1 OPEN BOOK ?
 - OVERTWISTED CONTACT STRUCTURES HAVE PLANAR (= GENUS O) OPEN BOOKS (FINYRE)
 - THERE ARE CONTACT STRUCTURES THAT DO NOT HAVE PLANAR OPEN BOOKS (FINGRE)
 - POSSBLE COUNTEREXAMPLE (MASSOT)

THN (WAND): LEGENDRIAN SURGERY PRESERVS TIGHTNESS

- THE PROOF RELIES ON AN EQUIVALENT CHARACTERISATION OF TIGHTNESS IN TERMS OF OPEN BOOKS
- THIS CHARACTERISATION IS GIVEN IN A SEQUENCE OF COMBINATORIAL DEFINITIONS THAT TAKE UP MULTIPLE PAGES

IS THERE A SIMPLER PROOF USING CONTACT HEEGAARD

• MOVES BETWEEN OPEN BOOKS OF THE SAME GENUS/ EULER CHARACTERIGTIC

THN (WAND): LEGENDRIAN SURGERY PRESERVS TIGHTNESS

- THE PROOF RELIES ON AN EQUIVALENT CHARACTERISATION OF TIGHTNESS IN TERMS OF OPEN BOOKS
- THIS CHARACTERISATION IS GIVEN IN A SEQUENCE OF COMBINATORIAL DEFINITIONS THAT TAKE UP MULTIPLE PAGES

IS THERE A SIMPLER PROOF USING CONTACT HEEGAARD

• MOVES BETWEEN OPEN BOOKS OF THE SAME GENUS/ EULER CHARACTERIGTIC

THANKS F()R X AILANTONI