Elements of Graded Lie Theory

Rudolf Šmolka Joint work with Jan Vysoký

Srní, 2025

What awaits

- ► A quick refresher on Z-graded manifolds
- ▶ Group objects in a category
- \blacktriangleright Group objects in $\mathbb Z\text{-}\mathsf{graded}$ manifolds graded Lie groups
- ▶ Left-invariant vector fields and the graded Lie algebra

There will also be some action (and fundamental VFs)

\mathbb{Z} -graded Refresher

- A way to work globally and consistently with graded-commutative variables
- ▶ Basically a smooth manifold M with an added sheaf of graded smooth functions, $\mathcal{M} := (M, C^{\infty}_{\mathcal{M}})$
- On coordinate patches, graded smooth functions behave like formal power series

$$f=\sum_{\boldsymbol{p}}f_{\boldsymbol{p}}\,\xi_1^{\boldsymbol{p}_1}\cdots\xi_{\tilde{n}}^{\boldsymbol{p}_{\tilde{n}}},$$

where

- $f_{\boldsymbol{p}} = f_{\boldsymbol{p}}(x^1, \dots, x^{n_0})$ are smooth functions on M
- $n_j := \#\{i \in \mathbb{Z} \mid |\xi_i| = j\}$ for $j \neq 0$. The sequence $(n_j)_{j \in \mathbb{Z}}$ is the graded dimension of \mathcal{M}
- $fg = (-1)^{|f||g|}gf$
- Both xⁱ and ξ_μ are called coordinates on *M*, and are sometimes denoted together as {xⁱ, ξ_μ} ∼ xⁱ

Example:

- ▶ Let $\mathbb{R}^{(n_j)}$ be the graded vector space $(\mathbb{R}^{(n_j)})_i = \mathbb{R}^{n_i}$ with $\sum_j n_j < +\infty$.
- We can make it into a graded manifold $g\mathbb{R}^{(n_j)} := (\mathbb{R}^{n_0}, C^{\infty}_{(n_{-j})}).$
- With global coordinates on gℝ^(n_j) given by some dual basis of ℝ^(n_j).

Group Objects in Cats

- ► The notion of a group object makes sense in every category C with products and a terminal object t ∈ C, [1].
- ▶ A group object in a category C is any (g, μ, e, i) , where
 - $g \in C$
 - $\mu: g \times g \rightarrow g$
 - $e: t \rightarrow g$
 - $i: g \to g$

Such that the diagrams:

all commute.

Can we actually say something about these things?

- We can apply the fully faithful Yoneda functor $Y : \mathsf{C} \to \mathsf{Set}^{\mathsf{C}^{\mathrm{op}}}$
 - $Ya := C(\cdot, a), \quad a \in C$
 - $Yf := f_*$, $f : a \to b$

Lemma

Let C be a locally small category. Then (g, μ, e, i) is a group object in C if and only if (Yg, μ_*, e_*, i_*) is a group object in Set^{Cop}.

So What?

Group objects in categories of functors valued in Set are just collections of groups and their morphisms:

Lemma

Let B be any category. Then (G, μ, e, i) is a group object in Set^B if and only if (Gb, μ_b, e_b, i_b) is a group for every $b \in B$ and Gh is a group morphism for every arrow h in B.

These two lemmas have a bunch of nice corollaries for any group object (g, μ, e, i) in a locally small category, e.g.

For a given μ , *e* and *i* are unique.

 $\blacktriangleright \imath \circ \imath = 1$

Group Object Action

We can also define action in this general setting:

▶ Let (g, μ, e, i) be a group object in C, $m \in C$. A left action of g on m is any arrow $\theta : g \times m \to m$ such that

both commmute. Note that the multiplication arrow is automatically both left and right action.

Graded Lie Groups

- ► A graded Lie group can be defined as a group object (G, µ, e, i) in the category gMan[∞].
- ► The definition via diagrams ensures that $(G, \underline{\mu}, \underline{e}, \underline{i})$ is a Lie group.
- ► The terminal object in gMan[∞] is the trivially graded point manifold {*}.
- An arrow {*} → M just corresponds to a choice of a point in M.

Graded Lie Groups

Example

The graded general linear group $GL(\mathbb{R}^{(n_j)})$ for a graded vector space $\mathbb{R}^{(n_j)}$, $\sum_i n_j = n < +\infty$.

- ► Covered by global graded coordinates {x_iⁱ}_{i,j=1}ⁿ of degree |x_jⁱ| = |e_j| |e_i|, where e_i are the standard basis vectors on ℝ^(n_j).
- ▶ The underlying smooth manifold is $\times_j GL(n_j)$.
- Multiplication arrow $\dots \mu^*(x_j^i) := p_2^*(x_j^k) p_1^*(x_k^i)$.
- ▶ Inversion arrow ... is a little ugly.
- Can act on $g\mathbb{R}^{(n_j)}$ via $\theta^*(y^k) = y^j x^k_{\ j}$, where y^j are standard coordinates on $g\mathbb{R}^{(n_j)}$.

Left-Invariant Vector Fields

- ► For $\mathcal{M}, \mathcal{N} \in \text{gMan}^{\infty}$, $\phi : \mathcal{M} \to \mathcal{N}, X \in \Gamma(T\mathcal{M})$, $Y \in \Gamma(T\mathcal{N})$ se say that X and Y are ϕ -related, $X \sim_{\phi} Y$, iff $X \circ \phi^* = \phi^* \circ Y$.
- ► We can say that a vector field $X \in \Gamma(T\mathcal{G})$ is left-invariant, iff $1 \otimes X \sim_{\mu} X$.
- Note that for any g ∈ G ⇔ g : {*} → G we have the isomorphism L_g : G → G, L_g := µ ∘ (g, 1). The requirement (L_g)_{*}X = X for all g ∈ G is now only neccesary, but not sufficient, for X to be left invariant.
 - An example of this is the Euler vector field Ef := |f|f on $\operatorname{GL}(\mathbb{R}^{(n_j)})$.

Left-Invariant Vector Fields

- ► Left-invariant vector fields are closed under the graded commutator ⇒ they form a degree zero graded Lie algebra.
- ► For any $v \in T_e \mathcal{G}$ one obtains a global left-invariant vector field as $\Gamma^L(T\mathcal{G}) \ni v^L := (1, e)^* \circ 1 \otimes X \circ \mu^*$, for any X such that $X|_e = v$.
- This yields the expected isomorphism T_eG ≃ Γ^L(TG) in gVec. Furthermore, if (v_i)ⁿ_{i=1} is a basis for T_eG, then (v^L_i)ⁿ_{i=1} is a frame for Γ(TG).

Infinitesimal Generator

In a very similar way we can define fundamental vector fields. Let $\theta : \mathcal{M} \times \mathcal{G} \to \mathcal{M}$ be a right action of a graded Lie group.

For any left-invariant $X \in \Gamma^{L}(T\mathcal{G})$ we can find a fundamental vector field

$$\#X := (1, e)^* \circ (1 \otimes X) \circ \theta^* \in \Gamma(T\mathcal{M}),$$

which satisfies

$$1\otimes X\sim_{\theta} \# X.$$

As expected, the infinitesimal generator # is an injective graded Lie algebra morphism.

The end... for now.

References and Acknowledgements

MacLane, S. (1978) Categories for the Working Mathematician. 2nd ed. Springer Science & Business Media.

- Vysoký, J. (2021) Global theory of graded manifolds. *Reviews in Mathematical Physics.* 34(10), 2250035.
- Vysoký, J. (2022) Graded generalized geometry. *Journal of Geometry and Physics.* 182, 104683.

The author is very grateful for the support of the grant GAČR 24-10031K.