
Elements of Graded Lie Theory

Rudolf Šmolka
Joint work with Jan Vysoký

Srní, 2025



What awaits

▶ A quick refresher on Z-graded manifolds
▶ Group objects in a category
▶ Group objects in Z-graded manifolds — graded Lie groups
▶ Left-invariant vector fields and the graded Lie algebra

There will also be some action (and fundamental VFs)



Z-graded Refresher
▶ A way to work globally and consistently with

graded-commutative variables
▶ Basically a smooth manifold M with an added sheaf of

graded smooth functions, M := (M ,C∞
M)

▶ On coordinate patches, graded smooth functions behave
like formal power series

f =
∑

p

fp ξ
p1
1 · · · ξpññ ,

where
• fp = fp(x

1, . . . , xn0) are smooth functions on M
• nj := #{i ∈ Z | |ξi | = j} for j ̸= 0. The sequence (nj)j∈Z

is the graded dimension of M
• fg = (−1)|f ||g |gf
• Both x i and ξµ are called coordinates on M, and are

sometimes denoted together as {x i , ξµ} ∼ x i



Example:

▶ Let R(nj ) be the graded vector space (R(nj ))i = Rni with∑
j nj < +∞.

▶ We can make it into a graded manifold
gR(nj ) := (Rn0 ,C∞

(n−j )
).

▶ With global coordinates on gR(nj ) given by some dual
basis of R(nj ).



Group Objects in Cats

▶ The notion of a group object makes sense in every
category C with products and a terminal object t ∈ C, [1].

▶ A group object in a category C is any (g , µ, e, ı), where
• g ∈ C
• µ : g × g → g
• e : t → g
• ı : g → g



Such that the diagrams:

g g × g g

g

(e,1)

1
µ

(1,e)

1

g g × g g

g

(ı,1)

e µ

(1,ı)

e

(g × g)× g g × (g × g)

g × g g × g

g

µ×1 1×µ

µ µ

all commute.



Can we actually say something about these things?
▶ We can apply the fully faithful Yoneda functor

Y : C → SetC
op

• Ya := C(·, a), a ∈ C
• Yf := f∗, f : a → b

Lemma
Let C be a locally small category. Then (g , µ, e, ı) is a group
object in C if and only if (Yg , µ∗, e∗, ı∗) is a group object in
SetC

op
.



So What?

Group objects in categories of functors valued in Set are just
collections of groups and their morphisms:

Lemma
Let B be any category. Then (G , µ, e, ı) is a group object in
SetB if and only if (Gb, µb, eb, ıb) is a group for every b ∈ B
and Gh is a group morphism for every arrow h in B.

These two lemmas have a bunch of nice corollaries for any
group object (g , µ, e, ı) in a locally small category, e.g:
▶ For a given µ, e and ı are unique.
▶ ı ◦ ı = 1



Group Object Action

We can also define action in this general setting:
▶ Let (g , µ, e, ı) be a group object in C, m ∈ C. A left

action of g on m is any arrow θ : g ×m → m such that

(g × g)×m g × (g ×m)

g ×m g ×m

m

µ×1 1×θ

θ θ

m g ×m

m
1

(e,1)

θ

both commmute. Note that the multiplication arrow is
automatically both left and right action.



Graded Lie Groups

▶ A graded Lie group can be defined as a group object
(G, µ, e, ı) in the category gMan∞.

▶ The definition via diagrams ensures that (G , µ, e, ı) is a
Lie group.

▶ The terminal object in gMan∞ is the trivially graded
point manifold {∗}.

▶ An arrow {∗} → M just corresponds to a choice of a
point in M .



Graded Lie Groups

Example
The graded general linear group GL(R(nj )) for a graded
vector space R(nj ),

∑
j nj = n < +∞.

▶ Covered by global graded coordinates {x ij }ni ,j=1 of degree
|x ij | = |ej | − |ei |, where ei are the standard basis vectors
on R(nj ).

▶ The underlying smooth manifold is ×jGL(nj).
▶ Multiplication arrow . . .µ∗(x ij ) := p∗2(x

k
j ) p

∗
1(x

i
k ).

▶ Inversion arrow . . . is a little ugly.
▶ Can act on gR(nj ) via θ∗(y k) = y jxkj , where y j are

standard coordinates on gR(nj ).



Left-Invariant Vector Fields

▶ For M,N ∈ gMan∞, ϕ : M → N , X ∈ Γ(TM),
Y ∈ Γ(TN ) se say that X and Y are ϕ-related, X ∼ϕ Y ,
iff X ◦ ϕ∗ = ϕ∗ ◦ Y .

▶ We can say that a vector field X ∈ Γ(TG) is
left-invariant, iff 1 ⊗ X ∼µ X .

▶ Note that for any g ∈ G ⇐⇒ g : {∗} → G we have the
isomorphism Lg : G → G, Lg := µ ◦ (g , 1). The
requirement (Lg )∗X = X for all g ∈ G is now only
neccesary, but not sufficient, for X to be left invariant.

• An example of this is the Euler vector field Ef := |f |f on
GL(R(nj )).



Left-Invariant Vector Fields

▶ Left-invariant vector fields are closed under the graded
commutator =⇒ they form a degree zero graded Lie
algebra.

▶ For any v ∈ TeG one obtains a global left-invariant vector
field as ΓL(TG) ∋ vL := (1, e)∗ ◦ 1 ⊗ X ◦ µ∗, for any X
such that X |e = v .

▶ This yields the expected isomorphism TeG ≃ ΓL(TG) in
gVec. Furthermore, if (vi)ni=1 is a basis for TeG, then
(vL

i )
n
i=1 is a frame for Γ(TG).



Infinitesimal Generator

In a very similar way we can define fundamental vector fields.
Let θ : M×G → M be a right action of a graded Lie group.
▶ For any left-invariant X ∈ ΓL(TG) we can find a

fundamental vector field

#X := (1, e)∗ ◦ (1 ⊗ X ) ◦ θ∗ ∈ Γ(TM),

which satisfies
1 ⊗ X ∼θ #X .

As expected, the infinitesimal generator # is an injective
graded Lie algebra morphism.



The end... for now.
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