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Tangential structures

A tangential structure on a manifold M is an alteration of the
structure group of GL(M) by a homomorphism

ρ : G → GL(d).

In terms of principal fiber bundles, this is a G-bundle P together with
a G-equivariant map P → GL(M) which commutes with the
projection to M .
In terms of classifying spaces, this is a lift

BG

Bρ

��
M //

::

BGL(d).
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Tangential structures

Important examples arise from the Whitehead-tower

. . . // String(d) // Spin(d) // SO(d) // O(d).
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Tangential structures

This yields a diagram

M // BO(d).
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Tangential structures

This yields a diagram

BSO(d)

��
M //

55

BO(d)
w1 // BZ.
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Tangential structures

This yields a diagram

BSpin(d)

��
BSO(d)

w2 //

��

B2Z

M //

44

;;

BO(d)
w1 // BZ.
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Tangential structures

This yields a diagram

BString(d)

��
BSpin(d)

1
2
p1 //

��

B4Z

BSO(d)
w2 //

��

B2Z

M //

44

::

AA

BO(d)
w1 // BZ.
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The spinor bundle construction

Let M be an orientable Riemannian manifold with a spin structure.

As M is orientable, the structure group of the frame bundle can be
reduced to SO(d). As we also have a spin structure we can further
pass to a Spin(d)-bundle.
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Let M be an orientable Riemannian manifold with a spin structure.
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As we also have a spin structure we can further

pass to a Spin(d)-bundle.

SO(M) GL(M)

M

SO(d)

GL(d)
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The spinor bundle construction

The group Spin(d) has an interesting unitary representation ∆ called
the spinor representation.

The spinor bundle on M is defined to be
the associated vector bundle

SM := Spin(M)×Spin(d) ∆.
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... on loop spaces

We try to do an analogous construction on

LM := C∞(S1,M).

LM has a Riemannian metric given by

g̃(γ1, γ2) =

∫
S1

g(γ1(θ), γ2(θ))dθ.
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... on loop spaces

The bundle TLM has fibers LRn.

We now get a LSO(d)-bundle.
However, LSO(d) has two connected components and the reduction
to its identity component is an LSpin(d)-bundle.
We interpret this as the oriented frame bundle of LM .

19.01.2025 Hannes Berkenhagen (Universität Greifswald) : The spinor bundle on loop space 9



... on loop spaces

The bundle TLM has fibers LRn. We now get a LSO(d)-bundle.

However, LSO(d) has two connected components and the reduction
to its identity component is an LSpin(d)-bundle.
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LSO(d)

LGL(d)
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... on loop spaces

LSpin(d) has no appropriate unitary representations.

However, the so
called basic extension

U(1) // ˜LSpin(d) // LSpin(d)

has one. Thus we need a loop-spin structure, i.e. a lift to a
˜LSpin(d)-bundle

˜LSpin(M) LSpin(M)

LM.

˜LSpin(d) LSpin(d)
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... on loop spaces

The obstruction to the existence of a loop-spin structure is a class

τM (
1

2
p1(M)) ∈ H3(LM,Z).

In particular string manifolds are loop-spin.
˜LSpin(d) has a unitary representation ∆. The spinor bundle on the

loop space is the associated vector bundle

SLM = ˜LSpin(M)× ˜LSpin(d)
∆.
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Ongoing work

For a spin manifold M one can define a Dirac-operator

D : Γ(M,SM ) → Γ(M,SM ).

There is an S1-equivariant index theorem for this operator and
formally applying it to LM yields a power series in K(M)[[q]].
˜LSpin(d) carries a S1-action which decomposes ∆ =

⊕
ZEn. We can

associate vector bundles Vn to these En and obtain another power
series ∑

Z
[Vn]q

n ∈ K(M)[[q]].

We want to compare these two.
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Ongoing work

LSpin(d) also has a natural Diff+(S1)-action and thus ˜LSpin(d)

comes with an action of an extension ˜Diff+(S1).

The extension is by
S1 and the action by this central S1 again decomposes ∆ and thus
yields a power series in K(M)[[q]].
We want to look at how this relates to the construction from the
previous slide.
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