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Problem: Need invariant characterization to study
asymptotically.

Solution: Conformal Killing—Yano 2-forms
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Frolov, Kubiznak 2008]

Question: What asymptotic behavior is prescribed for
CKY 2-form-admitting spacetimes?
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Conformal asymptotics of the CKY tensor

(M 4 g) conformally compact = There exists non-physical
spacetimes (M, Q?g) compact with 9M = Z(Q).
Observation: If (M, g) has conformally-invariant property
P =0, then so does (M, Q2g)

Define QY, := V(an)oc for a conformally-invariant 2-form
Q¢ € T(N*T*M[3))

2
= Q¥ = WO

Implication:
CKY 2-form on (M, g) = 09 — 0 on (M, Q%)

We can study asymptotically Kerr-NUT-dS spacetimes b
studying “conformally-invariant” series expansion of Q%9
near OM in ).
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Question: What extrinsic quantities characterizing

OM — (M,Q%g) must vanish when Q7 is a CKY 2-form?

Extractable: If 9%°9 = OOk [dropping superscript], then
oM oM OM —k—1,~ OM -

Q= V, 0= .- = VHIQg=0  [n:=0%""d9,)

Want: Conformally—invagiant versions of these constraint

equations in terms of Q9 [dropping superscript].

Zeroth order: Easy, as Q is already conformally-invariant.
(Assume II = 0 going forward). If @ = O(Q2), then

0% (Vo — H)Qu + ViQy

= (d 2)” ga( nQ)bc - (d - Q)HQ;; + @b
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Advantage: everything is manifestly conformally-invariant.
Has a “derivative” like operator

Da:TMw) —TM®TMw—1]
and “normal vector” like section [p := —1(AQ + JQ)]
Ip:= (Qn,p) = DsQ e T(TM[0]).
Conformally-invariant “normal derivative”:
[-D:= (Vi +wp) = grog—s(A+wl).
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m 7 conformally-invariant operators with leading symbol
(nCfoQQ(ab)c)T nor (n*n’V&?Qu.) " Typical

m 7 conformally-invariant operator with leading symbol
(nCViQ[ab]C)T nor (V2Qu)' . Surprising
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First order constraints

Fact: First order derivative operators always exist.
If Q = O(Q?), then:
(V2Qas) " + more oM
n°geV2Qap + more oM
FQh.. ™0
Fa[bQIc] — 1gapF - Q oM

2 evolution- 4+ 2 boundary constraint-type equations. This
is the expected general trend.
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Thank you!



