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Sam Blitz

Motivation

Our universe looks asymptotically de Sitter, and black
holes exist

Lots of work toward stability theorems: physically, we
expect this!

Natural question: how Kerr-de Sitter is such a black
hole?
⇒ Asymptotic obstructions!

Problem: Need invariant characterization to study
asymptotically.

Solution: Conformal Killing–Yano 2-forms
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Sam Blitz

Conformal Killing–Yano tensors

Let Q ∈ Γ(∧kT ∗M):

Q is CKY ⇔ ∇(aQb)◦c··· = 0 .

Fact: 4d spacetime admitting CKY 2-form ⇒ Petrov type
D [Dietz, Rudiger 1981]
Fact: Plebański-Demiański spacetime ⇒ Spacetime admits
CKY 2-form [Kubizňák, Krtouš 2007]
Fact: Kerr-NUT-(A)dS metric ⇔ Einstein spacetime
admitting closed (non-degenerate) CKY 2-form [Krtouš,
Frolov, Kubizňák 2008]

Question: What asymptotic behavior is prescribed for
CKY 2-form-admitting spacetimes?
Study obstructions asymptotically.
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Fact: Kerr-NUT-(A)dS metric ⇔ Einstein spacetime
admitting closed (non-degenerate) CKY 2-form [Krtouš,
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Question: What asymptotic behavior is prescribed for
CKY 2-form-admitting spacetimes?

Study obstructions asymptotically.

3 / 10



Sam Blitz

Conformal Killing–Yano tensors

Let Q ∈ Γ(∧kT ∗M):

Q is CKY ⇔ ∇(aQb)◦c··· = 0 .

Fact: 4d spacetime admitting CKY 2-form ⇒ Petrov type
D [Dietz, Rudiger 1981]
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Sam Blitz

Conformal asymptotics of the CKY tensor

(Md, g) conformally compact ⇒ There exists non-physical
spacetimes (M̄,Ω2g) compact with ∂M̄ = Z(Ω).

Observation: If (M, g) has conformally-invariant property
P = 0, then so does (M̄,Ω2g)

Define Qg
abc := ∇(aQ

g
b)◦c

for a conformally-invariant 2-form

Qg ∈ Γ(∧2T ∗M [3])

⇒ Qω2g = ω3Qg

Implication:

CKY 2-form on (M, g) ⇒ QΩ2g = 0 on (M̄,Ω2g)

We can study asymptotically Kerr-NUT-dS spacetimes by
studying “conformally-invariant” series expansion of QΩ2g

near ∂M̄ in Ω.
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Order-by-order obstructions

Question: What extrinsic quantities characterizing
∂M̄ ↪→ (M̄,Ω2g) must vanish when Qg is a CKY 2-form?

Extractable: If QΩ2g = O(Ωk) [dropping superscript], then

Q ∂M̄
= ∇nQ

∂M̄
= · · · ∂M̄= ∇k−1

n Q ∂M̄
= 0 [n := Ω−2g−1(dΩ, ·)]

Want: Conformally-invariant versions of these constraint
equations in terms of QΩ2g [dropping superscript].
Zeroth order: Easy, as Q is already conformally-invariant.
(Assume I̊I = 0 going forward). If Q = O(Ω), then

0
∂M̄
= ⊤(∇n −H)Qab + ∇̄[aQ

⊤
nb]

0
∂M̄
= (d− 2)nbḡca(∇nQ)bc − (d− 2)HQ⊤

na + ∇̄bQ⊤
ab

0
∂M̄
= CKY (Q⊤)abc

0
∂M̄
= ∇̄(aQ

⊤
nb)◦

.
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Sam Blitz

Constructing higher-order conformally-invariant
constraints I

If Q = O(Ω2), we want a conformally-invariant constraint

equation “∇nQ
∂M̄
= 0”.

Generally hard to construct such
operators ⇒ tractors.

Tractor calculus: Weighted tractor bundle T M [w] is
rank-(d+ 2) bundle, has natural connection, curvature, etc.
Advantage: everything is manifestly conformally-invariant.
Has a “derivative” like operator

D̂A : T M [w] → T M ⊗ T M [w − 1]

and “normal vector” like section [ρ := −1
d(∆Ω + JΩ)]

IA := (Ω, n, ρ) = D̂AΩ ∈ Γ(T M [0]) .

Conformally-invariant “normal derivative”:

I · D̂ := (∇n + wρ)− Ω
d+2w−2(∆ + wJ) .

6 / 10
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Sam Blitz

Constructing higher-order conformally-invariant
constraints II

Step 1: “Insert” Qabc into some tractor bundle, so
Qabc 7→ QABC [formula in Silhan’s thesis 2006].

Step 2: Apply normal derivatives (I · D̂)k and take
projections (4 of them) to T ∂M̄ .
Step 3: “Extract” projections of ∇k

nQabc using formal
adjoint of insertion operators.
Problem: These operators do not always exist: problems in
both I · D̂ (not enough derivatives!) and/or in extraction
operators.
Conjectures:

∄ conformally-invariant operators with leading symbol
(nc∇d−2

n Q(ab)c)
⊤ nor (nanb∇d−2

n Qabc)
⊤ Typical

∄ conformally-invariant operator with leading symbol
(nc∇2

nQ[ab]c)
⊤ nor (∇2

nQabc)
⊤. Surprising
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First order constraints

Fact: First order derivative operators always exist.

If Q = O(Ω2), then:

(∇2
nQab)

⊤ +more
∂M̄
= 0

naḡbc∇2
nQab +more

∂M̄
= 0

F̊ c
(aQ

⊤
b)◦c

∂M̄
= 0

F̊ a[bQ
⊤
nc] −

1
2 ḡa[bF̊ c] ·Q⊤

n
∂M̄
= 0

2 evolution- + 2 boundary constraint-type equations. This
is the expected general trend.
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Trouble brewing at higher orders

Already at order 2 there are problems.

In 4 dimensions, no such operators exist! (conjecturally)
Can only resort to conditionally-invariant operators.
Expectation (not yet done):
If Q = O(Ω3), then:

(∇3
nQab)

⊤ +more
∂M̄
= 0

naḡbc∇3
nQab +more

∂M̄
= 0

I̊Vc
(aQ

⊤
b)◦c

∂M̄
= 0

I̊Va[bQ
⊤
nc] −

1
2 ḡa[bI̊Vc] ·Q⊤

n
∂M̄
= 0

As I̊V is the undetermined Neumann data, these constraints
are interesting.
Boundary constraint-type equations characterize
“how” Kerr-de Sitter a spacetime can be. Matter!
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naḡbc∇3
nQab +more

∂M̄
= 0

I̊Vc
(aQ

⊤
b)◦c

∂M̄
= 0

I̊Va[bQ
⊤
nc] −

1
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Thank you

Thank you!
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