Sam Blitz

Asymptotically Kerr-de Sitter Spacetimes: Necessary Conditions

S. Blitz (Unpublished work with Jaroslaw Kopinski)

Masaryk University

Srní, 45th Winter School, January 2025

Sam Blitz

 Our universe looks asymptotically de Sitter, and black holes exist

Sam Blitz

- Our universe looks asymptotically de Sitter, and black holes exist
- Lots of work toward stability theorems: physically, we expect this!

Sam Blitz

- Our universe looks asymptotically de Sitter, and black holes exist
- Lots of work toward stability theorems: physically, we expect this!
- Natural question: *how* Kerr-de Sitter is such a black hole?

Sam Blitz

- Our universe looks asymptotically de Sitter, and black holes exist
- Lots of work toward stability theorems: physically, we expect this!
- Natural question: how Kerr-de Sitter is such a black hole?
 - \Rightarrow Asymptotic obstructions!

Sam Blitz

- Our universe looks asymptotically de Sitter, and black holes exist
- Lots of work toward stability theorems: physically, we expect this!
- Natural question: how Kerr-de Sitter is such a black hole?
 - \Rightarrow Asymptotic obstructions!

Problem: Need invariant characterization to study asymptotically.

Sam Blitz

- Our universe looks asymptotically de Sitter, and black holes exist
- Lots of work toward stability theorems: physically, we expect this!
- Natural question: how Kerr-de Sitter is such a black hole?
 - \Rightarrow Asymptotic obstructions!

Problem: Need invariant characterization to study asymptotically.

Solution: Conformal Killing-Yano 2-forms

ım Blitz

Let
$$Q \in \Gamma(\wedge^k T^*M)$$
:

$$Q \text{ is CKY} \quad \Leftrightarrow \quad \nabla_{(a}Q_{b)\circ c\cdots} = 0 \,.$$

Sam Blitz

Let
$$Q \in \Gamma(\wedge^k T^*M)$$
:

$$Q \text{ is CKY} \quad \Leftrightarrow \quad \nabla_{(a}Q_{b)\circ c\cdots} = 0.$$

Fact: 4d spacetime admitting CKY 2-form \Rightarrow Petrov type D [Dietz, Rudiger 1981]

Sam Blitz

Let
$$Q \in \Gamma(\wedge^k T^*M)$$
:

$$Q \text{ is CKY} \quad \Leftrightarrow \quad \nabla_{(a}Q_{b)\circ c\cdots} = 0.$$

Fact: 4d spacetime admitting CKY 2-form \Rightarrow Petrov type

D [Dietz, Rudiger 1981]

Fact: Plebański-Demiański spacetime \Rightarrow Spacetime admits

CKY 2-form [Kubizňák, Krtouš 2007]

Sam Blitz

Let
$$Q \in \Gamma(\wedge^k T^*M)$$
:

$$Q \text{ is CKY} \quad \Leftrightarrow \quad \nabla_{(a}Q_{b)\circ c\cdots} = 0.$$

Fact: 4d spacetime admitting CKY 2-form \Rightarrow Petrov type D [Dietz, Rudiger 1981]

Fact: Plebański-Demiański spacetime ⇒ Spacetime admits

CKY 2-form [Kubizňák, Krtouš 2007]

Fact: Kerr-NUT-(A)dS metric ⇔ Einstein spacetime admitting closed (non-degenerate) CKY 2-form [Krtouš, Frolov, Kubizňák 2008]

Sam Blitz

Let
$$Q \in \Gamma(\wedge^k T^*M)$$
:

$$Q \text{ is CKY} \quad \Leftrightarrow \quad \nabla_{(a}Q_{b)\circ c\cdots} = 0.$$

Fact: 4d spacetime admitting CKY 2-form \Rightarrow Petrov type D [Dietz, Rudiger 1981]

Fact: Plebański-Demiański spacetime ⇒ Spacetime admits

CKY 2-form [Kubizňák, Krtouš 2007]

Fact: Kerr-NUT-(A)dS metric \Leftrightarrow Einstein spacetime admitting closed (non-degenerate) CKY 2-form [Krtouš, Frolov, Kubizňák 2008]

Question: What asymptotic behavior is prescribed for CKY 2-form-admitting spacetimes?

Let $Q \in \Gamma(\wedge^k T^*M)$:

$$Q \text{ is CKY} \quad \Leftrightarrow \quad \nabla_{(a}Q_{b)\circ c\cdots} = 0.$$

Fact: 4d spacetime admitting CKY 2-form \Rightarrow Petrov type D [Dietz, Rudiger 1981]

Fact: Plebański-Demiański spacetime ⇒ Spacetime admits

CKY 2-form [Kubizňák, Krtouš 2007]

Fact: Kerr-NUT-(A)dS metric ⇔ Einstein spacetime admitting closed (non-degenerate) CKY 2-form [Krtouš, Frolov, Kubizňák 2008]

Question: What asymptotic behavior is prescribed for CKY 2-form-admitting spacetimes?

Study obstructions asymptotically.

n Blitz

 (M^d, g) conformally compact \Rightarrow There exists non-physical spacetimes $(\overline{M}, \Omega^2 g)$ compact with $\partial \overline{M} = \mathcal{Z}(\Omega)$.

Sam Blitz

 (M^d, g) conformally compact \Rightarrow There exists non-physical spacetimes $(\bar{M}, \Omega^2 g)$ compact with $\partial \bar{M} = \mathcal{Z}(\Omega)$. **Observation:** If (M, g) has conformally-invariant property P = 0, then so does $(\bar{M}, \Omega^2 g)$

Sam Blitz

 (M^d, g) conformally compact \Rightarrow There exists non-physical spacetimes $(\bar{M}, \Omega^2 g)$ compact with $\partial \bar{M} = \mathcal{Z}(\Omega)$.

Observation: If (M, g) has conformally-invariant property P = 0, then so does $(\bar{M}, \Omega^2 g)$

Define $Q_{abc}^g:=\nabla_{(a}Q_{b)\circ c}^g$ for a conformally-invariant 2-form $Q^g\in\Gamma(\wedge^2T^*M[3])$

Sam Blitz

 (M^d, g) conformally compact \Rightarrow There exists non-physical spacetimes $(\bar{M}, \Omega^2 g)$ compact with $\partial \bar{M} = \mathcal{Z}(\Omega)$.

Observation: If (M, g) has conformally-invariant property P = 0, then so does $(\bar{M}, \Omega^2 g)$

Define $Q^g_{abc}:=\nabla_{(a}Q^g_{b),c}$ for a conformally-invariant 2-form $Q^g\in\Gamma(\wedge^2T^*M[3])$

$$\Rightarrow \mathcal{Q}^{\omega^2 g} = \omega^3 \mathcal{Q}^g$$

Sam Blitz

 (M^d, g) conformally compact \Rightarrow There exists non-physical spacetimes $(\bar{M}, \Omega^2 g)$ compact with $\partial \bar{M} = \mathcal{Z}(\Omega)$.

Observation: If (M, g) has conformally-invariant property P = 0, then so does $(\bar{M}, \Omega^2 g)$

Define $Q^g_{abc}:=\nabla_{(a}Q^g_{b)\circ c}$ for a conformally-invariant 2-form $Q^g\in\Gamma(\wedge^2T^*M[3])$

$$\Rightarrow \mathcal{Q}^{\omega^2 g} = \omega^3 \mathcal{Q}^g$$

Implication:

CKY 2-form on
$$(M,g) \Rightarrow \mathcal{Q}^{\Omega^2 g} = 0$$
 on $(\bar{M}, \Omega^2 g)$

ım Blitz

 (M^d, g) conformally compact \Rightarrow There exists non-physical spacetimes $(\bar{M}, \Omega^2 g)$ compact with $\partial \bar{M} = \mathcal{Z}(\Omega)$.

Observation: If (M, g) has conformally-invariant property P = 0, then so does $(\bar{M}, \Omega^2 g)$

Define $Q_{abc}^g:=\nabla_{(a}Q_{b)_{\circ}c}^g$ for a conformally-invariant 2-form $Q^g\in\Gamma(\wedge^2T^*M[3])$

$$\Rightarrow \mathcal{Q}^{\omega^2 g} = \omega^3 \mathcal{Q}^g$$

Implication:

CKY 2-form on
$$(M, g) \Rightarrow \mathcal{Q}^{\Omega^2 g} = 0$$
 on $(\bar{M}, \Omega^2 g)$

We can study asymptotically Kerr-NUT-dS spacetimes by studying "conformally-invariant" series expansion of $\mathcal{Q}^{\Omega^2 g}$ near $\partial \bar{M}$ in Ω .

Sam Blitz

Question: What extrinsic quantities characterizing $\partial \bar{M} \hookrightarrow (\bar{M}, \Omega^2 g)$ must vanish when Q^g is a CKY 2-form?

Sam Blitz

Question: What extrinsic quantities characterizing $\partial \bar{M} \hookrightarrow (\bar{M}, \Omega^2 g)$ must vanish when Q^g is a CKY 2-form? Extractable: If $Q^{\Omega^2 g} = \mathcal{O}(\Omega^k)$ [dropping superscript], then

$$\mathcal{Q} \stackrel{\partial \bar{M}}{=} \nabla_n \mathcal{Q} \stackrel{\partial \bar{M}}{=} \cdots \stackrel{\partial \bar{M}}{=} \nabla_n^{k-1} \mathcal{Q} \stackrel{\partial \bar{M}}{=} 0 \qquad [n := \Omega^{-2} g^{-1}(d\Omega, \cdot)]$$

Sam Blitz

Question: What extrinsic quantities characterizing $\partial \bar{M} \hookrightarrow (\bar{M}, \Omega^2 g)$ must vanish when Q^g is a CKY 2-form? Extractable: If $\mathcal{Q}^{\Omega^2 g} = \mathcal{O}(\Omega^k)$ [dropping superscript], then

$$\mathcal{Q} \stackrel{\partial \bar{M}}{=} \nabla_n \mathcal{Q} \stackrel{\partial \bar{M}}{=} \cdots \stackrel{\partial \bar{M}}{=} \nabla_n^{k-1} \mathcal{Q} \stackrel{\partial \bar{M}}{=} 0 \qquad [n := \Omega^{-2} g^{-1}(d\Omega, \cdot)]$$

Want: Conformally-invariant versions of these constraint equations in terms of $Q^{\Omega^2 g}$ [dropping superscript].

Sam Blitz

Question: What extrinsic quantities characterizing $\partial \bar{M} \hookrightarrow (\bar{M}, \Omega^2 g)$ must vanish when Q^g is a CKY 2-form? Extractable: If $\mathcal{Q}^{\Omega^2 g} = \mathcal{O}(\Omega^k)$ [dropping superscript], then

$$\mathcal{Q} \stackrel{\partial \bar{M}}{=} \nabla_n \mathcal{Q} \stackrel{\partial \bar{M}}{=} \cdots \stackrel{\partial \bar{M}}{=} \nabla_n^{k-1} \mathcal{Q} \stackrel{\partial \bar{M}}{=} 0 \qquad [n := \Omega^{-2} g^{-1}(d\Omega, \cdot)]$$

Want: Conformally-invariant versions of these constraint equations in terms of $Q^{\Omega^2 g}$ [dropping superscript].

Zeroth order: Easy, as Q is already conformally-invariant. (Assume $\mathring{\Pi} = 0$ going forward). If $Q = \mathcal{O}(\Omega)$, then

Sam Blit

Question: What extrinsic quantities characterizing $\partial \bar{M} \hookrightarrow (\bar{M}, \Omega^2 g)$ must vanish when Q^g is a CKY 2-form? Extractable: If $\mathcal{Q}^{\Omega^2 g} = \mathcal{O}(\Omega^k)$ [dropping superscript], then

$$Q \stackrel{\partial \bar{M}}{=} \nabla_n Q \stackrel{\partial \bar{M}}{=} \cdots \stackrel{\partial \bar{M}}{=} \nabla_n^{k-1} Q \stackrel{\partial \bar{M}}{=} 0 \qquad [n := \Omega^{-2} g^{-1}(d\Omega, \cdot)]$$

Want: Conformally-invariant versions of these constraint equations in terms of $Q^{\Omega^2 g}$ [dropping superscript].

Zeroth order: Easy, as Q is already conformally-invariant. (Assume $\mathring{\parallel} = 0$ going forward). If $Q = \mathcal{O}(\Omega)$, then

$$0 \stackrel{\partial \bar{M}}{=} \top (\nabla_n - H) Q_{ab} + \bar{\nabla}_{[a} Q_{nb]}^{\top}$$

$$0 \stackrel{\partial \bar{M}}{=} (d-2)n^b \bar{g}_a^c (\nabla_n Q)_{bc} - (d-2)HQ_{na}^\top + \bar{\nabla}^b Q_{ab}^\top$$

$$0 \stackrel{\partial \bar{M}}{=} \overline{CKY}(Q^{\top})_{abc}$$

$$0 \stackrel{\partial \bar{M}}{=} \bar{\nabla}_{(a} Q_{nb)_{\circ}}^{\top}.$$

If $Q = \mathcal{O}(\Omega^2)$, we want a conformally-invariant constraint equation " $\nabla_n Q \stackrel{\partial \bar{M}}{=} 0$ ".

Constructing higher-order conformally-invariant

constraints I

Blitz

If $Q = \mathcal{O}(\Omega^2)$, we want a conformally-invariant constraint equation " $\nabla_n Q \stackrel{\partial \bar{M}}{=} 0$ ". Generally hard to construct such operators

n Blitz

If $Q = \mathcal{O}(\Omega^2)$, we want a conformally-invariant constraint equation " $\nabla_n Q \stackrel{\partial \bar{M}}{=} 0$ ". Generally *hard* to construct such operators \Rightarrow **tractors**.

Sam Blitz

If $Q = \mathcal{O}(\Omega^2)$, we want a conformally-invariant constraint equation " $\nabla_n Q \stackrel{\partial \bar{M}}{=} 0$ ". Generally *hard* to construct such operators \Rightarrow **tractors**.

Tractor calculus: Weighted tractor bundle $\mathcal{T}M[w]$ is rank-(d+2) bundle, has natural connection, curvature, etc. Advantage: everything is manifestly conformally-invariant.

Sam Blitz

If $Q = \mathcal{O}(\Omega^2)$, we want a conformally-invariant constraint equation " $\nabla_n Q \stackrel{\partial \bar{M}}{=} 0$ ". Generally *hard* to construct such operators \Rightarrow **tractors**.

Tractor calculus: Weighted tractor bundle $\mathcal{T}M[w]$ is rank-(d+2) bundle, has natural connection, curvature, etc. Advantage: everything is manifestly conformally-invariant. Has a "derivative" like operator

$$\hat{D}_A: \mathcal{T}M[w] \to \mathcal{T}M \otimes \mathcal{T}M[w-1]$$

and "normal vector" like section $[\rho:=-\frac{1}{d}(\Delta\Omega+J\Omega)]$

$$I_A := (\Omega, n, \rho) = \hat{D}_A \Omega \in \Gamma(\mathcal{T}M[0]).$$

Blitz

If $Q = \mathcal{O}(\Omega^2)$, we want a conformally-invariant constraint equation " $\nabla_n Q \stackrel{\partial \bar{M}}{=} 0$ ". Generally *hard* to construct such operators \Rightarrow **tractors**.

Tractor calculus: Weighted tractor bundle $\mathcal{T}M[w]$ is rank-(d+2) bundle, has natural connection, curvature, etc. Advantage: everything is manifestly conformally-invariant. Has a "derivative" like operator

$$\hat{D}_A: \mathcal{T}M[w] \to \mathcal{T}M \otimes \mathcal{T}M[w-1]$$

and "normal vector" like section $[\rho := -\frac{1}{d}(\Delta\Omega + J\Omega)]$

$$I_A := (\Omega, n, \rho) = \hat{D}_A \Omega \in \Gamma(\mathcal{T}M[0]).$$

Conformally-invariant "normal derivative":

$$I \cdot \hat{D} := (\nabla_n + w\rho) - \frac{\Omega}{d+2w-2}(\Delta + wJ)$$
.

n Blitz

Step 1: "Insert" Q_{abc} into some tractor bundle, so $Q_{abc} \mapsto Q_{ABC}$ [formula in Silhan's thesis 2006].

Sam Blitz

Step 1: "Insert" Q_{abc} into some tractor bundle, so $Q_{abc} \mapsto Q_{ABC}$ [formula in Silhan's thesis 2006]. Step 2: Apply normal derivatives $(I \cdot \hat{D})^k$ and take projections (4 of them) to $\mathcal{T}\partial \bar{M}$.

Sam Blitz

Step 1: "Insert" Q_{abc} into some tractor bundle, so $Q_{abc} \mapsto Q_{ABC}$ [formula in Silhan's thesis 2006]. Step 2: Apply normal derivatives $(I \cdot \hat{D})^k$ and take projections (4 of them) to $\mathcal{T}\partial \bar{M}$. Step 3: "Extract" projections of $\nabla_n^k Q_{abc}$ using formal

Step 3: "Extract" projections of $\nabla_n^{\kappa} \mathcal{Q}_{abc}$ using formal adjoint of insertion operators.

Sam Blitz

Step 1: "Insert" Q_{abc} into some tractor bundle, so $Q_{abc} \mapsto Q_{ABC}$ [formula in Silhan's thesis 2006]. Step 2: Apply normal derivatives $(I \cdot \hat{D})^k$ and take

Step 2: Apply normal derivatives $(I \cdot D)^n$ and take projections (4 of them) to $\mathcal{T}\partial \bar{M}$.

Step 3: "Extract" projections of $\nabla_n^k \mathcal{Q}_{abc}$ using formal adjoint of insertion operators.

Problem:

Sam Blitz

Step 1: "Insert" Q_{abc} into some tractor bundle, so $Q_{abc} \mapsto Q_{ABC}$ [formula in Silhan's thesis 2006].

Step 2: Apply normal derivatives $(I \cdot \hat{D})^k$ and take projections (4 of them) to $\mathcal{T}\partial \bar{M}$.

Step 3: "Extract" projections of $\nabla_n^k \mathcal{Q}_{abc}$ using formal adjoint of insertion operators.

Problem: These operators do not always exist: problems in both $I \cdot \hat{D}$ (not enough derivatives!) and/or in extraction operators.

Sam Blitz

Step 1: "Insert" Q_{abc} into some tractor bundle, so $Q_{abc} \mapsto Q_{ABC}$ [formula in Silhan's thesis 2006].

Step 2: Apply normal derivatives $(I \cdot \hat{D})^k$ and take projections (4 of them) to $\mathcal{T}\partial \bar{M}$.

Step 3: "Extract" projections of $\nabla_n^k \mathcal{Q}_{abc}$ using formal adjoint of insertion operators.

Problem: These operators do not always exist: problems in both $I \cdot \hat{D}$ (not enough derivatives!) and/or in extraction operators.

Conjectures:

Sam Blitz

Step 1: "Insert" Q_{abc} into some tractor bundle, so $Q_{abc} \mapsto Q_{ABC}$ [formula in Silhan's thesis 2006].

Step 2: Apply normal derivatives $(I \cdot \hat{D})^k$ and take projections (4 of them) to $\mathcal{T}\partial \bar{M}$.

Step 3: "Extract" projections of $\nabla_n^k \mathcal{Q}_{abc}$ using formal adjoint of insertion operators.

Problem: These operators do not always exist: problems in both $I \cdot \hat{D}$ (not enough derivatives!) and/or in extraction operators.

Conjectures:

■ \sharp conformally-invariant operators with leading symbol $(n^c \nabla_n^{d-2} \mathcal{Q}_{(ab)c})^{\top}$ nor $(n^a n^b \nabla_n^{d-2} \mathcal{Q}_{abc})^{\top}$

Sam Blitz

Step 1: "Insert" Q_{abc} into some tractor bundle, so $Q_{abc} \mapsto Q_{ABC}$ [formula in Silhan's thesis 2006].

Step 2: Apply normal derivatives $(I \cdot \hat{D})^k$ and take projections (4 of them) to $\mathcal{T}\partial \bar{M}$.

Step 3: "Extract" projections of $\nabla_n^k \mathcal{Q}_{abc}$ using formal adjoint of insertion operators.

Problem: These operators do not always exist: problems in both $I \cdot \hat{D}$ (not enough derivatives!) and/or in extraction operators.

Conjectures:

■ \sharp conformally-invariant operators with leading symbol $(n^c \nabla_n^{d-2} \mathcal{Q}_{(ab)c})^{\top}$ nor $(n^a n^b \nabla_n^{d-2} \mathcal{Q}_{abc})^{\top}$ Typical

Sam Blitz

Step 1: "Insert" Q_{abc} into some tractor bundle, so $Q_{abc} \mapsto Q_{ABC}$ [formula in Silhan's thesis 2006].

Step 2: Apply normal derivatives $(I \cdot \hat{D})^k$ and take projections (4 of them) to $\mathcal{T}\partial \bar{M}$.

Step 3: "Extract" projections of $\nabla_n^k \mathcal{Q}_{abc}$ using formal adjoint of insertion operators.

Problem: These operators do not always exist: problems in both $I \cdot \hat{D}$ (not enough derivatives!) and/or in extraction operators.

Conjectures:

- \sharp conformally-invariant operators with leading symbol $(n^c \nabla_n^{d-2} \mathcal{Q}_{(ab)c})^{\top}$ nor $(n^a n^b \nabla_n^{d-2} \mathcal{Q}_{abc})^{\top}$ Typical
- \sharp conformally-invariant operator with leading symbol $(n^c \nabla_n^2 \mathcal{Q}_{[ab]c})^{\top}$ nor $(\nabla_n^2 \mathcal{Q}_{abc})^{\top}$.

Sam Blitz

Step 1: "Insert" Q_{abc} into some tractor bundle, so $Q_{abc} \mapsto Q_{ABC}$ [formula in Silhan's thesis 2006].

Step 2: Apply normal derivatives $(I \cdot \hat{D})^k$ and take projections (4 of them) to $\mathcal{T}\partial \bar{M}$.

Step 3: "Extract" projections of $\nabla_n^k Q_{abc}$ using formal adjoint of insertion operators.

Problem: These operators do not always exist: problems in both $I \cdot \hat{D}$ (not enough derivatives!) and/or in extraction operators.

Conjectures:

- \sharp conformally-invariant operators with leading symbol $(n^c \nabla_n^{d-2} \mathcal{Q}_{(ab)c})^{\top}$ nor $(n^a n^b \nabla_n^{d-2} \mathcal{Q}_{abc})^{\top}$ Typical
- \sharp conformally-invariant operator with leading symbol $(n^c \nabla_n^2 \mathcal{Q}_{[ab]c})^{\top}$ nor $(\nabla_n^2 \mathcal{Q}_{abc})^{\top}$. Surprising

m Blitz

Fact: First order derivative operators always exist.

Sam Blitz

Fact: First order derivative operators always exist.

If $Q = \mathcal{O}(\Omega^2)$, then:

Sam Blitz

Fact: First order derivative operators always exist.

If $Q = \mathcal{O}(\Omega^2)$, then:

$$\begin{split} (\nabla_n^2 Q_{ab})^\top + \text{more} &\overset{\partial \bar{M}}{=} 0 \\ n^a \bar{g}_c^b \nabla_n^2 Q_{ab} + \text{more} &\overset{\partial \bar{M}}{=} 0 \\ \mathring{F}_{(a}^c Q_{b) \circ c}^\top &\overset{\partial \bar{M}}{=} 0 \\ \mathring{F}_{a[b} Q_{nc]}^\top - \frac{1}{2} \bar{g}_{a[b} \mathring{F}_{c]} \cdot Q_n^\top &\overset{\partial \bar{M}}{=} 0 \end{split}$$

Sam Blitz

Fact: First order derivative operators always exist.

If $Q = \mathcal{O}(\Omega^2)$, then:

$$\begin{split} (\nabla_n^2 Q_{ab})^\top + \text{more} & \stackrel{\partial \bar{M}}{=} 0 \\ n^a \bar{g}_c^b \nabla_n^2 Q_{ab} + \text{more} & \stackrel{\partial \bar{M}}{=} 0 \\ \mathring{F}_{(a}^c Q_{b) \circ c}^\top & \stackrel{\partial \bar{M}}{=} 0 \\ \mathring{F}_{a[b} Q_{nc]}^\top - \frac{1}{2} \bar{g}_{a[b} \mathring{F}_{c]} \cdot Q_n^\top & \stackrel{\partial \bar{M}}{=} 0 \end{split}$$

2 evolution- + 2 boundary constraint-type equations. This is the expected general trend.

Blit

Already at order 2 there are problems.

Blitz

Already at order 2 there are problems.

In 4 dimensions, no such operators exist! (conjecturally)

Sam Blitz

Already at order 2 there are problems.

In 4 dimensions, no such operators exist! (conjecturally) Can only resort to *conditionally-invariant* operators.

Sam Blitz

Already at order 2 there are problems. In 4 dimensions, no such operators exist! (conjecturally) Can only resort to *conditionally-invariant* operators. Expectation (not yet done):

Sam Blitz

Already at order 2 there are problems.

In 4 dimensions, no such operators exist! (conjecturally)

Can only resort to *conditionally-invariant* operators.

Expectation (not yet done):

If $Q = \mathcal{O}(\Omega^3)$, then:

$$\begin{split} (\nabla_n^3 Q_{ab})^\top + \text{more} &\overset{\partial \bar{M}}{=} 0 \\ n^a \bar{g}_c^b \nabla_n^3 Q_{ab} + \text{more} &\overset{\partial \bar{M}}{=} 0 \\ \mathring{\text{IV}}_{(a}^c Q_{b)_{\circ}c}^\top &\overset{\partial \bar{M}}{=} 0 \\ \mathring{\text{IV}}_{a[b}^c Q_{nc]}^\top - \frac{1}{2} \bar{g}_{a[b} \mathring{\text{IV}}_{c]} \cdot Q_n^\top &\overset{\partial \bar{M}}{=} 0 \end{split}$$

Sam Blitz

Already at order 2 there are problems.

In 4 dimensions, no such operators exist! (conjecturally)

Can only resort to *conditionally-invariant* operators.

Expectation (not yet done):

If $Q = \mathcal{O}(\Omega^3)$, then:

$$\begin{split} (\nabla_n^3 Q_{ab})^\top + \text{more} &\overset{\partial \bar{M}}{=} 0 \\ n^a \bar{g}_c^b \nabla_n^3 Q_{ab} + \text{more} &\overset{\partial \bar{M}}{=} 0 \\ \mathring{\text{IV}}_{(a}^c Q_{b)_{\circ}c}^\top &\overset{\partial \bar{M}}{=} 0 \\ \mathring{\text{IV}}_{a[b}^c Q_{nc]}^\top - \frac{1}{2} \bar{g}_{a[b} \mathring{\text{IV}}_{c]} \cdot Q_n^\top &\overset{\partial \bar{M}}{=} 0 \end{split}$$

As IV is the undetermined Neumann data, these constraints are *interesting*.

Blitz

Already at order 2 there are problems.

In 4 dimensions, no such operators exist! (conjecturally)

Can only resort to conditionally-invariant operators.

Expectation (not yet done):

If $Q = \mathcal{O}(\Omega^3)$, then:

$$(\nabla_n^3 Q_{ab})^{\top} + \text{more} \stackrel{\partial \bar{M}}{=} 0$$

$$n^a \bar{g}_c^b \nabla_n^3 Q_{ab} + \text{more} \stackrel{\partial \bar{M}}{=} 0$$

$$\mathring{\mathrm{IV}}_{(a}^{c}Q_{b)_{\circ}c}^{\top} \stackrel{\partial \bar{M}}{=} 0$$

9/10

$$\mathring{\mathbf{I}} \mathring{\mathbf{V}}_{a[b} Q_{nc]}^{\top} - \frac{1}{2} \bar{g}_{a[b} \mathring{\mathbf{I}} \mathring{\mathbf{V}}_{c]} \cdot Q_n^{\top} \stackrel{\partial M}{=} 0$$

As IV is the undetermined Neumann data, these constraints are *interesting*.

Boundary constraint-type equations characterize "how" Kerr-de Sitter a spacetime can be.

Blitz

Already at order 2 there are problems. In 4 dimensions, no such operators exist! (conjecturally)

Can only resort to *conditionally-invariant* operators.

Expectation (not yet done): If $Q = \mathcal{O}(\Omega^3)$, then:

$$(\nabla_n^3 Q_{ab})^{\top} + \text{more } \stackrel{\partial M}{=} 0$$

$$n^a \bar{g}_c^b \nabla_n^3 Q_{ab} + \text{more } \stackrel{\partial M}{=} 0$$

$$\mathring{\text{IV}}_{(a}^c Q_b) \stackrel{\partial \bar{M}}{=} 0$$

$$\begin{aligned} \mathbf{IV}_{[a}Q_{b)\circ c}^{\top} &= 0 \\ \mathbf{I\mathring{V}}_{a[b}Q_{nc]}^{\top} - \frac{1}{2}\bar{g}_{a[b}\mathbf{\mathring{I}\mathring{V}}_{c]} \cdot Q_{n}^{\top} \stackrel{\partial \bar{M}}{=} 0 \end{aligned}$$

As $\mathring{\text{IV}}$ is the undetermined Neumann data, these constraints are interesting.

are interesting.

Boundary constraint-type equations characterize

"how" Kerr-de Sitter a spacetime can be. Matter! 9/10

litz

Thank you!

Thank you