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@ This talk reports on joint work with K. Flood and T. Mettler
(Brig), see arXiv:2409.12811

@ Building on classical work of Chern-Simons, we define global
invariants for certain types of connection forms with values in
a Lie algebra g on principal H-bundles over compact oriented
3-manifolds, which admit global smooth sections.

@ This needs a non-degenerate invariant bilinear form on g and
depending on this form and on H, the invariants can have
values in R or in R/Z.

@ In the case of principal connections, we introduce a concept of
flat extension, which is then shown to either imply vanishing
of the invariants or integrality of an R-valued invariant.

@ Geometric interpretations of flat extensions are provided in
several cases.
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Background and definition of the invariants

Chern-Simons forms and the resulting invariants can be defined in
the general setting of Chern-Weil theory. Here we restrict to the
simplest version of the Chern-Simons 3-form, which leads to
invariants in dimension 3.

Consider a Lie algebra (g,[ , ]) endowed with a non-degenerate,
invariant, symmetric bilinear form ( , ) and Q*(N, g) for a
manifold N. For a € QX(N, g) and 5 € QY(N, g) we then obtain
[, B] € QKHE(N, g) and (o, B) € QK(N) which are nicely
compatible with the exterior derivative.

To § € QY(N, g) one associates © := df + 3[0,0] € Q*(N, g) and
then considers (©,0) € Q*(N). If N is the total space of a
principal G-bundle and @ is a principal connection form, then © is
its curvature and (©, ©) is closed, horizontal and equivariant.
Hence it determines a cohomology class on the base, which
generalizes the first Pontryagin class.

Andreas Cap



Background and definition of the invariants

The starting point of Chern-Simons theory is that for

CS(0) := (0, d0) + 3(0,[0,06]) one gets (©,0) = dCS(0) (but
CS(0) does not descend to the base). Note that if 6 is flat, CS(0)
is closed and hence determines a cohomology class on N.

Let (M, g) be a closed, oriented, Riemannian 3-manifold, N — M
its orthonormal frame bundle, and # € Q*(N, o(n)) the Levi-Civita
connection. Since M is parallelizable, there is a global section

o : M — N and one defines ¢, := [,,0*CS5(6) € R. Normalizing
(, ) appropriately, one obtains for any other section &,

Cs — Cs € Z, and hence an invariant in R/Z. Chern-Simons proved
that this is conformally invariant and vanishes if M admits an
isometric immersion into R*.

D. Burns and C. Epstein used CS(#) for the canonical Cartan
connection of a compact, oriented CR 3-manifold with trivial
Cartan bundle to similarly define a global invariant. Here one can
show that c¢; = ¢, so the invariant is R-valued.
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Background and definition of the invariants

General definition of the invariants

We fix (g,[, ], {, )) and consider a subgroup H of a Lie group G
with Lie algebra g, so h C g. For a principal H-bundle 7: P - M
let R: P x H— P be the principal action and consider the
“partial maps” R,: P —> Pforhe Hand i,: H— P for u € P.

Definition

0 € QL(P,g) is called a g-connection form if R0 = Ad(h~!) o6
and 70 = py, the Maurer-Cartan form of H.

Observe that uy € QY(H,h) € QY(H, g) and using the latter
interpretation, we can form CS%(uy) € Q3(H), which is closed
since iy satisfies the Maurer-Cartan equation. This also implies
that CS9(up) is the left invariant form associated to

(X,Y,Z)— —%(X, [Y, Z]). If b is simple, this is a multiple of the
Cartan 3-form, which generates H3(H,Z).
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Background and definition of the invariants

Fix a principal H-bundle m: P — M over a closed oriented
3-manifold that admits a global section o. For a g-connection form
0 € Q(P, g) consider ¢, := [,,0*CS(0) € R.

Proposition

(1) If CS9(up) is exact, then ¢, € R is independent of o and
hence an invariant of 6.

(2) If [CS(up)] € H3(H,Z) C H3(H,R), then ¢, +Z € R/Z is
independent of ¢ and hence an invariant of 6.

Sketch of proof: For a section &, we get 5(x) = R(o(x), h(x))
for some smooth function h: M — H. A direct computation shows
that R*CS(0) = CS(0) + CS%(un) + dy for some o € Q3(P).
This easily implies that ¢; = ¢, + [}, h* CS%(un).

Note: The restriction of (, ) to h may be degenerate.
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Background and definition of the invariants

Examples on compact, oriented 3-manifolds

@ G =H=50(3), (, ) normalized such that [,, CS(un) = £1:
classical R/Z-valued invariant for Riemannian manifolds

@ G = H =50(2,1): R-valued invariant for Lorentzian
manifolds admitting a global orthonormal frame

@ G=H=S5L(3,R),(, ) normalized as for SO(3): R/Z-valued
invariant for volume preserving affine connections

Q G = PSU(2,1) D H stabilizer of isotropic line: R-valued
Burns-Epstein invariant for CR manifolds admitting a global
CR vector field; Here ( , ) is degenerate on b.

© Similar R-valued invariants for Legendrean contact structures
(or equivalently path geometries or 2nd order ODE)
respectively contact projective structures. In both cases, a
condition ensuring triviality of the Cartan bundle has to be
imposed.
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Flat extensions

These provide a systematic way to construct sufficient conditions
for vanishing of Chern-Simons invariants. Here we realize g as a
Lie subalgebra of a bigger Lie algebra § and consider (, ) on §
such that the restriction to g is non-degenerate.

This implies that § = g ® g and this decomposition is g-invariant.
Hence g-valued forms decompose as o = o' + ' according to
their values and G-equivariancy properties are preserved. Note that
if in addition [g', g*] C g, then (§,g) is a symmetric pair.

Using (, ) to define CS for both g-valued and g-valued forms, a
computation leads to the following key lemma

For 6 € QY(N,§), # = 60" + 6+ with curvature © = ©T + O+, we
get CS(0) = CS(0") + (6+,01). In particular, if 6 satisfies the
Maurer-Cartan equation, then CS(#) = CS(07).
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Flat extensions

Starting from G C @,Nthis first implies that if (, ) is chosen such
that [CS(ug)] € H3(G,Z), then [CS(ug)] € H3(G,Z).

For Lie subalgebras of gl(n,R), one can obtain invariant bilinear
forms from the trace-form on gl(n,R). In particular, this provides
(, ) for so(n) C sl(n,R) as well as for so(n) C so(n+ 1) and
sl(n,R) C sl(n+ 1,R). For this choice, one obtains the familiar
expression CS(6) = tr(6 A df + %0 NG AB).

Now let p: P — M be a principal P-bundle and let 8 € Ql(Fj,g)
be a principal connection. Then a f/atNextension of type (G, G) is a
G-equivariant smooth map F : P — G such that § = F*(,ug).

Suppose that 0 € Q'(P, g) as above admits a flat extension F of
type (G, G) such that [F*(ué), F*(ué)] € Q3(P,g). If CS(pg) is
exact then ¢, = 0 and [CS(ug)] € H3(G,Z) implies ¢,(6) € Z.
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Flat extensions

The basic examples of flat extensions are obtained from lifting the
Gauss map of a flat immersion to a frame bundle. In the
Riemannian case, G = SO(3) and G = SO(4) and we use an
isometric immersion f : M — R*. Viewing a point u € P, the
ON-frame bundle, as v : R3 — T, M, we can add the oriented unit
normal to Tf o u to obtain an orthogonal map R* — R*. This
defines F : P — SO(4) and since (g, g) is a symmetric pair, the
theorem implies vanishing of the Chern-Simons invariant.

In the Lorentzian case, there are two cases with G = SOp(3,1) and
G = S0(2,2), respectively. As above, flat extensions are obtained
from isometric immersions into R3! respectively into R?? and
(g, 9) is a symmetric pair in both cases. In the first case, the
theorem implies integrality, in the second case vanishing of the
Chern-Simons invariant (which is R-valued here).

Both in the Riemannian and the Lorentzian case, F*(,ué)
equivalently encodes the second fundamental form.
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Flat extensions

The case G = SL(3,RR) of volume preserving connections with

G = SL(4,R) is a bit more difficult, but ties in nicely with the
classical notion of an equiaffine immersion of (M, V). In addition
to an immersion f : M — R* one has to choose £ : M — RP3,
such that ¢(x) is transversal to Tf(TxM) for any x € M.

Given (f,£) and x € M, we can decompose R* = T R* as

T f(T«M) @ ¢(x). Hence we can decompose the restriction of the
flat connection V into a tangential and a transversal component.
The immersion is called equiaffine iff f*(V') = V.

The pair (f, ¢) determines a lift of the Gauss map to a map F from
the volume preserving frame bundle of M to SO(4), which then
defines a flat extension. Again, F*(,ué) admits an interpretation as
the second fundamental form and the shape operator (which are
independent objects here). Using that V is volume preserving, one
proves that [F*(ué), F*(ué)] is g-valued and the theorem implies
vanishing of the Chern-Simons invariant.
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