Convex orderings on quantum root vectors and differential calculi

Alessandro Carotenuto

University of Parma

January 20, 2025

э

- This work is a collaboration with P. Papi in Rome.
- We find a nice combinatorial description of quantum first order differential calculi in terms of conex ordering on root systems.

イロン イロン イヨン イヨン

- This work is a collaboration with P. Papi in Rome.
- We find a nice combinatorial description of quantum first order differential calculi in terms of conex ordering on root systems.
- Continuation of the work with the (quantum) group of Prague on quantum homogeneous spaces of $U_q(\mathfrak{g})$ and geometric representation theory.

2/19

- This work is a collaboration with P. Papi in Rome.
- We find a nice combinatorial description of quantum first order differential calculi in terms of conex ordering on root systems.
- Continuation of the work with the (quantum) group of Prague on quantum homogeneous spaces of $U_q(\mathfrak{g})$ and geometric representation theory.

2/19

1. Drinfeld-Jimbo quantum groups and quantum flag manifolds

• Let $(a_{ij})_{ij}$ denote the Cartan matrix of \mathfrak{g} .

Fix $q \in \mathbb{R} \setminus \{\pm 1, 0\}$.

The quantised enveloping algebra $U_q(\mathfrak{g})$ is generated by

$$E_i, F_i, K_i, K_i^{-1}, \qquad i=1,\ldots,r;$$

subject to the relations

$$\begin{split} \mathcal{K}_{i} E_{j} &= q_{i}^{a_{ij}} E_{j} \mathcal{K}_{i}, \qquad \qquad \mathcal{K}_{i} F_{j} = q_{i}^{-a_{ij}} F_{j} \mathcal{K}_{i}, \qquad \qquad \mathcal{K}_{i} \mathcal{K}_{j} = \mathcal{K}_{j} \mathcal{K}_{i}, \\ E_{i} F_{j} - F_{j} E_{i} &= \delta_{ij} \frac{\mathcal{K}_{i} - \mathcal{K}_{i}^{-1}}{q_{i} - q_{i}}; \end{split}$$

< ロ > < 同 > < 回 > < 回 >

1. Drinfeld-Jimbo quantum groups and quantum flag manifolds

• Let $(a_{ij})_{ij}$ denote the Cartan matrix of \mathfrak{g} .

Fix $q \in \mathbb{R} \setminus \{\pm 1, 0\}$.

The quantised enveloping algebra $U_q(\mathfrak{g})$ is generated by

$$E_i, F_i, K_i, K_i^{-1}, \qquad i = 1, \ldots, r;$$

subject to the relations

$$\begin{split} \mathcal{K}_{i} \mathcal{E}_{j} &= q_{i}^{a_{ij}} \mathcal{E}_{j} \mathcal{K}_{i}, \qquad \qquad \mathcal{K}_{i} \mathcal{F}_{j} = q_{i}^{-a_{ij}} \mathcal{F}_{j} \mathcal{K}_{i}, \qquad \qquad \mathcal{K}_{i} \mathcal{K}_{j} = \mathcal{K}_{j} \mathcal{K}_{i}, \\ \mathcal{E}_{i} \mathcal{F}_{j} - \mathcal{F}_{j} \mathcal{E}_{i} &= \delta_{ij} \frac{\mathcal{K}_{i} - \mathcal{K}_{i}^{-1}}{q_{i} - q_{i}}; \end{split}$$

• Hopf algebra, with coproduct defined on generators

$$\Delta(K_i) = K_i \otimes K_i, \quad \Delta(E_i) = E_i \otimes K_i + 1 \otimes E_i,$$

$$\Delta(F_i) = F_i \otimes 1 + K_i^{-1} \otimes F_i$$

э

We have a pairing of Hopf algebras

$$U_q(\mathfrak{g})\otimes \mathcal{O}_q(G) \to \mathbb{C}$$

Which induces left and right actions

 $U_q(\mathfrak{g})\otimes \mathcal{O}_q(G)
ightarrow \mathcal{O}_q(G), \qquad \mathcal{O}_q(G)\otimes U_q(\mathfrak{g})
ightarrow \mathcal{O}_q(G).$

 (U_q(g), O_q(G)) describes a good q-deformation of the classical topology of each Lie group G. They all admit a C*- algebraic completion as examples of Woronowicz's compact quantum groups. We have a pairing of Hopf algebras

```
U_q(\mathfrak{g})\otimes \mathcal{O}_q(G) \to \mathbb{C}
```

Which induces left and right actions

 $U_q(\mathfrak{g})\otimes \mathcal{O}_q(G) o \mathcal{O}_q(G), \qquad \mathcal{O}_q(G)\otimes U_q(\mathfrak{g}) o \mathcal{O}_q(G).$

 (U_q(g), O_q(G)) describes a good q-deformation of the classical topology of each Lie group G. They all admit a C*- algebraic completion as examples of Woronowicz's compact quantum groups.

イロト 不得 トイヨト イヨト 二日

4/19

$$U_q(\mathfrak{l}_S) := \langle K_i, E_j, F_j \mid i = 1, \ldots, l; j \in S \rangle.$$

イロト イヨト イヨト イヨト

2

$$U_q(\mathfrak{l}_S) := \langle K_i, E_j, F_j \mid i = 1, \ldots, l; j \in S \rangle.$$

2

$$U_q(\mathfrak{l}_S) := \langle K_i, E_j, F_j | i = 1, \ldots, l; j \in S \rangle.$$

• Consider now the coideal subalgebra of $U_q(l_S)$ -invariants

$$\mathcal{O}_q(G/L_S) := {}^{U_q(\mathfrak{l}_S)}\mathcal{O}_q(G),$$

with respect to the natural left $U_q(\mathfrak{g})$ -module structure on $\mathcal{O}_q(G)$.

イロト イボト イヨト イヨト

$$U_q(\mathfrak{l}_S) := \langle K_i, E_j, F_j | i = 1, \ldots, I; j \in S \rangle.$$

• Consider now the coideal subalgebra of $U_q(l_S)$ -invariants

$$\mathcal{O}_q(G/L_S) := {}^{U_q(\mathfrak{l}_S)}\mathcal{O}_q(G),$$

with respect to the natural left $U_q(\mathfrak{g})$ -module structure on $\mathcal{O}_q(G)$.

- We call $\mathcal{O}_q(G/L_S)$ the quantum flag manifold associated to S.
- This is an example of quantum homogeneous space and a q-deformation of classical flag manifolds.

イロト 不得 トイヨト イヨト

2. Quantum covariant differential calculi

Following Woronowicz's idea we look for q-deformed complex geometries starting from the **De Rham complex**.

2. Quantum covariant differential calculi

Following Woronowicz's idea we look for q-deformed complex geometries starting from the **De Rham complex**.

- (Ω^1, d) a first-order differential calculus(fodc) over an algebra B
 - Ω¹ is a *B*-bimodule
 - $d: B \to \Omega^1$ is a derivation (the exterior derivative).
 - Ω^1 is generated as a left *B*-module by those elements of the form d*b*, for $b \in B$.

・ロト ・ 同ト ・ ヨト ・ ヨト

2. Quantum covariant differential calculi

Following Woronowicz's idea we look for q-deformed complex geometries starting from the **De Rham complex**.

- (Ω^1, d) a first-order differential calculus(fodc) over an algebra B
 - Ω¹ is a *B*-bimodule
 - $d: B \to \Omega^1$ is a derivation (the exterior derivative).
 - Ω^1 is generated as a left *B*-module by those elements of the form d*b*, for $b \in B$.
- Let *B* be a left *A*-comodule, we say that a (first order) differential calculus is *A* covariant if d is an *A*-comodule map.

・ロト ・ 同ト ・ ヨト ・ ヨト

6/19

- There exist no bicovariant calculus on $\mathcal{O}_q(G)$ of classical dimension.
- However most of our troubles arise from the action of K_i on $\mathcal{O}_q(G)$ and we can avoid them by looking at the quantum flag manifolds $\mathcal{O}_q(G/L_S)$ (We wipe out the worst noncommutativity that comes from the action of the K's!)

- There exist no bicovariant calculus on $\mathcal{O}_q(G)$ of classical dimension.
- However most of our troubles arise from the action of K_i on $\mathcal{O}_q(G)$ and we can avoid them by looking at the quantum flag manifolds $\mathcal{O}_q(G/L_S)$ (We wipe out the worst noncommutativity that comes from the action of the K's!)
- Differential calculi for **irreducible** quantum flag manifolds. (Heckenberger and Kolb 2006).

- There exist no bicovariant calculus on $\mathcal{O}_q(G)$ of classical dimension.
- However most of our troubles arise from the action of K_i on $\mathcal{O}_q(G)$ and we can avoid them by looking at the quantum flag manifolds $\mathcal{O}_q(G/L_S)$ (We wipe out the worst noncommutativity that comes from the action of the K's!)
- Differential calculi for **irreducible** quantum flag manifolds. (Heckenberger and Kolb 2006).
- Differential calculi for full flag manifolds in type A (Ó Buachalla and Somberg 2022, A.C.,Ó Buachalla and Razzaq 2022).

$$\Omega^1(A) = A \otimes rac{A^+}{I} \quad A^+ = {\sf ker}(arepsilon)$$

• How to describe the right ideal *I*?

$$\Omega^1(A) = A \otimes rac{A^+}{I} \quad A^+ = {\sf ker}(arepsilon)$$

• How to describe the right ideal *I*?

Definition

A subspace $T \subseteq U_q(\mathfrak{g})$ is called a quantum tangent space if

$$\Delta(T) \subseteq (T \oplus \mathbb{C}) \otimes U_q(\mathfrak{g}).$$

$$\Omega^1(A) = A \otimes rac{A^+}{I} \quad A^+ = {\sf ker}(arepsilon)$$

• How to describe the right ideal *I*?

Definition

A subspace $T \subseteq U_q(\mathfrak{g})$ is called a quantum tangent space if

$$\Delta(T) \subseteq (T \oplus \mathbb{C}) \otimes U_q(\mathfrak{g}).$$

There is a one-to-one correspondence between right ideals *I* ⊆ *A*⁺ and tangent spaces *T*.

$$I = \ker(T) := \bigcap_{X \in T} \ker(X).$$

 Idea: use Lusztig root vectors, a well-established theory for U_q(g) to look for quantum tangent spaces of quantum flag manifolds

$$\Omega^1(A) = A \otimes rac{A^+}{I} \quad A^+ = \ker(arepsilon)$$

• How to describe the right ideal *I*?

Definition

A subspace $T \subseteq U_q(\mathfrak{g})$ is called a quantum tangent space if

$$\Delta(T) \subseteq (T \oplus \mathbb{C}) \otimes U_q(\mathfrak{g}).$$

There is a one-to-one correspondence between right ideals *I* ⊆ *A*⁺ and tangent spaces *T*.

$$I = \ker(T) := \bigcap_{X \in T} \ker(X).$$

• Idea: use Lusztig root vectors, a well-established theory for $U_q(\mathfrak{g})$ to look for quantum tangent spaces of quantum flag manifolds

э

< 日 > < 同 > < 三 > < 三 > 、

3. Lusztig root vectors and fodc

• $\mathcal{B}_{\mathfrak{g}}$ the braid group of \mathfrak{g} is the group generated by s_i $1 \le i \le l$ with relations

S _i S _j =	$= s_j s_i$	00
SiSjSi =	= SjSiSj	00
<i>S_j S_i S_j S_i</i> =	$= s_i s_j s_i s_j$	0==0
SjSiSjSiSjSi =	$= S_i S_j S_i S_j S_i S_j$	

• $W_{\mathfrak{g}}$, the **Weyl group of** \mathfrak{g} , is generated by w_i with the same relations and additionally

$$w_i^2 = 1$$

イロト イポト イヨト イヨト

Theorem

To every generator s_i i = 1, ..., l of $\mathcal{B}_{\mathfrak{g}}$ there corresponds an algebra automorphism T_i of $U_q(\mathfrak{g})$ which acts on the generators as

$$T_{i}(K_{j}) = K_{j}K_{i}^{-a_{ij}}, \quad T_{i}(E_{i}) = -F_{i}K_{i}, \quad T_{i}(F_{i}) = -K_{i}^{-1}E_{i},$$

$$T_{i}(E_{j}) = \sum_{t=0}^{-a_{ij}} (-1)^{t-a_{ij}} q_{i}^{-t}(E_{i})^{(-a_{ij}-t)} E_{j}(E_{i})^{(t)}, \quad i \neq j,$$

$$T_{i}(F_{j}) = \sum_{t=0}^{-a_{ij}} (-1)^{t-a_{ij}} q_{i}^{t}(F_{i})^{(t)} F_{j}(F_{i})^{(-a_{ij}-t)}, \quad i \neq j,$$

where

$$(X)^{(n)} := X^n / [n]_{q_i}!$$

э

10/19

- In the universal enveloping $U(\mathfrak{g})$ we have root vectors for every root of \mathfrak{g} .
- We can use the action of $\mathcal{B}_{\mathfrak{g}}$ to define root vectors in $U_q(\mathfrak{g})$ (not uniquely!)

æ

- In the universal enveloping $U(\mathfrak{g})$ we have root vectors for every root of \mathfrak{g} .
- We can use the action of $\mathcal{B}_{\mathfrak{g}}$ to define root vectors in $U_q(\mathfrak{g})$ (not uniquely!)
- Let w = w_{i1}...w_{in} be a reduced decomposition of the longest element of W_g, denote by α_i the simple roots of g. The list

$$\beta_1 = \alpha_{i_1} \quad \beta_k = w_{i_1} \dots w_{i_{k-1}}(\alpha_{i_k})$$

exhausts all the positive roots of \mathfrak{g} .

Definition

The elements

$$E_{\beta_k} = T_{i_1} \dots T_{i_{k-1}}(E_{i_k}), \quad F_{\beta_k} = T_{i_1} \dots T_{i_{k-1}}(F_{i_k})$$

from $U_q(\mathfrak{g})$ are called root vectors of $U_q(\mathfrak{g})$ corresponding to the root β and $-\beta$ respectively.

イロト イヨト イヨト イヨト

2

Definition

The elements

$$E_{\beta_k} = T_{i_1} \dots T_{i_{k-1}}(E_{i_k}), \quad F_{\beta_k} = T_{i_1} \dots T_{i_{k-1}}(F_{i_k})$$

from $U_q(\mathfrak{g})$ are called root vectors of $U_q(\mathfrak{g})$ corresponding to the root β and $-\beta$ respectively.

Example

For $\mathfrak{g} = \mathfrak{sl}_3$, we have only two reduced decompositions of the longest element of the Weyl group:

 $w_1w_2w_1, \quad w_2w_1w_2$

Definition

The elements

$$E_{\beta_k} = T_{i_1} \dots T_{i_{k-1}}(E_{i_k}), \quad F_{\beta_k} = T_{i_1} \dots T_{i_{k-1}}(F_{i_k})$$

from $U_q(\mathfrak{g})$ are called root vectors of $U_q(\mathfrak{g})$ corresponding to the root β and $-\beta$ respectively.

Example

For $\mathfrak{g} = \mathfrak{sl}_3$, we have only two reduced decompositions of the longest element of the Weyl group:

$w_1w_2w_1, \quad w_2w_1w_2$

Correspondingly we have two lists of positive root vectors.

$$\begin{array}{c|c} E_{i_1} & E_1 & E_2 \\ T_{i_1}(E_{i_2}) & [E_1, E_2]_{q^{-1}} & [E_2, E_1]_{q^{-1}} \\ T_{i_1}T_{i_2}(E_{i_3}) & E_2 & E_1 \end{array}$$

• For each \mathfrak{g} we can look for a reduced decomposition $w_0 = w_{i_1} \dots w_{i_n}$ such that the corresponding $\{E_{\beta_i}\}_{i=1}^n$ span a quantum tangent space in $U_q(\mathfrak{g})$.

< ロ > < 同 > < 回 > < 回 >

• For each \mathfrak{g} we can look for a reduced decomposition $w_0 = w_{i_1} \dots w_{i_n}$ such that the corresponding $\{E_{\beta_i}\}_{i=1}^n$ span a quantum tangent space in $U_q(\mathfrak{g})$.

Non-Example

Let $\mathfrak{g} = \mathfrak{sl}_4$, the positive root vectors corresponding to the decomposition

 $w_0 = w_1 w_2 w_3 w_2 w_1 w_2$

do not span a quantum tangent space, since one has

 $\Delta E_{\beta_3} = E_{\beta_3} \otimes K_1 K_2 K_3 + \nu E_{\beta_4} E_{\beta_6} \otimes E_{\beta_1} K_1 K_3 + 1 \otimes E_{\beta_3}.$

イロト 不得 トイヨト イヨト

Example (R. Ó Buachalla-P. Somberg)

Let $\mathfrak{g} = \mathfrak{sl}_{n+1}$, then the two reduced decompositions

 $w_1 w_2 \dots w_n w_1 \dots w_{n-1} w_1 \dots w_1 w_2 w_1$ and

 $W_n W_{n-1} \ldots W_1 W_n \ldots W_2 W_n \ldots W_n W_{n-1} W_n$

give rise to two (isomorphic) tangent spaces on $U_q(\mathfrak{g})$ spanned by their respective $\{E_\beta\}$.

$$E_{i,i+k} := E_{\alpha_i + \alpha_{i+1} \dots \alpha_{i+k}} = [E_i, [E_{i+1}, \dots [E_{i+k-1}, E_{i+k}]_{q^{\pm}}]_{q^{\pm}} \dots]_{q^{\pm}}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example (R. Ó Buachalla-P. Somberg)

Let $\mathfrak{g} = \mathfrak{sl}_{n+1}$, then the two reduced decompositions

 $w_1 w_2 \dots w_n w_1 \dots w_{n-1} w_1 \dots w_1 w_2 w_1$ and

 $W_n W_{n-1} \ldots W_1 W_n \ldots W_2 W_n \ldots W_n W_{n-1} W_n$

give rise to two (isomorphic) tangent spaces on $U_q(\mathfrak{g})$ spanned by their respective $\{E_\beta\}$.

$$E_{i,i+k} := E_{\alpha_i + \alpha_{i+1} \dots \alpha_{i+k}} = [E_i, [E_{i+1}, \dots [E_{i+k-1}, E_{i+k}]_{q^{\pm}}]_{q^{\pm}} \dots]_{q^{\pm}}$$

• These tangent spaces project to the quantum flag manifolds and the corresponding maximal prolongations of their fodc have classical dimension

イロト イポト イヨト イヨト

5. Convex orderings and differential calculi

- Denote by Δ^+ the set of positive roots of $\mathfrak{g}.$
- We say that a total ordering \leq on Δ^+ is a convex ordering when the following holds:

When $\beta, \ \beta', \ \beta + \beta' \in \Delta^+ \Rightarrow \beta \leq \beta + \beta' \leq \beta'$ or $\beta' \leq \beta + \beta' \leq \beta$

< ロ > < 同 > < 回 > < 回 >

5. Convex orderings and differential calculi

- Denote by Δ^+ the set of positive roots of $\mathfrak{g}.$
- \bullet We say that a total ordering \leq on Δ^+ is a convex ordering when the following holds:

When
$$\beta, \beta', \beta + \beta' \in \Delta^+ \Rightarrow \beta \leq \beta + \beta' \leq \beta'$$
 or $\beta' \leq \beta + \beta' \leq \beta$

Proposition (P. Papi)

There is one-to-one correspondence between convex orderings on Δ^+ and reduced decompositions of the longest element of the weyl group $\mathcal{W}_\mathfrak{g}$

5. Convex orderings and differential calculi

- Denote by Δ^+ the set of positive roots of $\mathfrak{g}.$
- We say that a total ordering \leq on Δ^+ is a convex ordering when the following holds:

When
$$\beta, \ \beta', \ \beta + \beta' \in \Delta^+ \Rightarrow \beta \leq \beta + \beta' \leq \beta'$$
 or $\beta' \leq \beta + \beta' \leq \beta$

Proposition (P. Papi)

There is one-to-one correspondence between convex orderings on Δ^+ and reduced decompositions of the longest element of the weyl group $\mathcal{W}_{\mathfrak{g}}$

• An ordering on the set of positive roots induces an ordering on the set $\{E_{\beta}\}$ via $\beta \leq \beta' \Leftrightarrow E_{\beta} \leq E_{\beta'}$

< 日 > < 同 > < 三 > < 三 > 、

15/19

- Let {E_{βk}, F_{βk}} be the set of root vectors of U_q(g) for a given reduced decomposition of the longest element of W_g.
- Let us consider partitions

$$\beta_k = \beta'_{i_1} + \dots + \beta'_{i_s} + \beta''_{j_1} + \dots + \beta''_{j_r} =: \beta_l + \beta_J$$
$$\beta'_{i_1} \le \dots \le \beta'_{i_s} \le \beta_k \le \beta''_{j_1} \le \dots \le \beta''_{j_r}$$

- Let {E_{βk}, F_{βk}} be the set of root vectors of U_q(g) for a given reduced decomposition of the longest element of W_g.
- Let us consider partitions

$$\beta_k = \beta'_{i_1} + \dots + \beta'_{i_s} + \beta''_{j_1} + \dots + \beta''_{j_r} =: \beta_l + \beta_J$$

$$\beta'_{i_1} \leq \cdots \leq \beta'_{i_s} \leq \beta_k \leq \beta''_{j_1} \leq \cdots \leq \beta''_{j_r}$$

Theorem (A.C., P. Papi)

The coproduct of E_{β_k} and F_{β_k} reads respectively

$$\Delta(E_{\beta_k}) = \sum_{I,J} f(I,J) E_{\beta_{j_1}^{\prime\prime}} \dots E_{\beta_{j_r}^{\prime\prime}} \otimes E_{\beta_{i_1}^{\prime}} \dots E_{\beta_{j_s}^{\prime\prime}} K_{\beta^{\prime\prime}}.$$
$$\Delta(F_{\beta_k}) = \sum_{I,J} g(I,J) F_{\beta_{i_1}^{\prime\prime}} \dots F_{\beta_{i_r}^{\prime\prime}} K_{\beta^{\prime\prime}}^{-1} \otimes F_{\beta_{i_1}^{\prime\prime}} \dots F_{\beta_{j_s}^{\prime\prime}}.$$

イロト 不得 トイヨト イヨト

- Let {E_{βk}, F_{βk}} be the set of root vectors of U_q(g) for a given reduced decomposition of the longest element of W_g.
- Let us consider partitions

$$\beta_k = \beta'_{i_1} + \dots + \beta'_{i_s} + \beta''_{j_1} + \dots + \beta''_{j_r} =: \beta_l + \beta_J$$

$$\beta'_{i_1} \leq \cdots \leq \beta'_{i_s} \leq \beta_k \leq \beta''_{j_1} \leq \cdots \leq \beta''_{j_r}$$

Theorem (A.C., P. Papi)

The coproduct of E_{β_k} and F_{β_k} reads respectively

$$\Delta(E_{\beta_k}) = \sum_{I,J} f(I,J) E_{\beta_{j_1}^{\prime\prime}} \dots E_{\beta_{j_r}^{\prime\prime}} \otimes E_{\beta_{i_1}^{\prime}} \dots E_{\beta_{j_s}^{\prime\prime}} K_{\beta^{\prime\prime}}.$$
$$\Delta(F_{\beta_k}) = \sum_{I,J} g(I,J) F_{\beta_{i_1}^{\prime\prime}} \dots F_{\beta_{i_r}^{\prime\prime}} K_{\beta^{\prime\prime}}^{-1} \otimes F_{\beta_{i_1}^{\prime\prime}} \dots F_{\beta_{j_s}^{\prime\prime}}.$$

イロト 不得 トイヨト イヨト

• $\{F_{\beta_k}\}$ span a tangent space iff only the terms $g(\{j\}, I')$ are different from zero in the expression of the coproduct.

- $\{F_{\beta_k}\}$ span a tangent space iff only the terms $g(\{j\}, I')$ are different from zero in the expression of the coproduct.
- We denote by $\mathbf{i} = i_1 \dots i_n$ our given reduced expression of w_0
- For every F_{β_k} there exists a reduced expression $\mathbf{j} = j_1 \dots j_r$ with $r \leq n$ such that:

$$F_{\beta_k}=T_{j_1}\ldots T_{j_{p-1}}(F_{j_p}).$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- {*F*_{βk}} span a tangent space iff only the terms g({*j*}, *I*') are different from zero in the expression of the coproduct.
- We denote by $\mathbf{i} = i_1 \dots i_n$ our given reduced expression of w_0
- For every F_{β_k} there exists a reduced expression $\mathbf{j} = j_1 \dots j_r$ with $r \leq n$ such that:

$$F_{\beta_k} = T_{j_1} \ldots T_{j_{p-1}}(F_{j_p}).$$

The terms appearing as left tensor factor are given by {F_{j1}, T_{j1}(F_{j2})...}.
 We call this elements the **prefix root vectors** of F_{βk} and denote them by { *μ̃*^k_{βi}}.

イロト 不得 トイヨト イヨト

- We can now describe a quantum tangent space in a completely combinatorial way!
- Let w
 k be the minimum of the set {v ≤ s{i1}...s_{ik} | β_k ∈ N(v)}. Fix a reduced decomposition w
 k = s^k{j1}...s^k_{jr}.

Conjecture

The quantum root vectors $\{F_{\beta_k}\}$ associated to i span a quantum tangent space iff for every k the following hold

- $\{ \tilde{F}_{\beta_i}^k \} = \{ F_{\beta_i} \}.$
- $\textbf{@} If s_{j_i}^k s_{j_{i+1}}^k = s_{j_{i+1}}^k s_{j_i}^k \text{ then } \beta_i^{\mathbf{j}} + \beta_{i+1}^{\mathbf{j}} \not\leq \beta_k \text{ in the usual partial order of positive roots.}$
- If $\beta_i^{\mathbf{j}}$ is contained in the support of β_k with multiplicity greater than 1 then $\gamma = \beta_k \beta_i^{\mathbf{j}}$ cannot be decomposed as the sum of positive roots that follow β_k in the convex ordering induced by \mathbf{i} .

イロト 不得 トイヨト イヨト

18/19

Thank you!

イロン イロン イヨン イヨン

2