Winter School Geometry and Physics – Srni 2025

Curvature of quaternionic skew-Hermitian manifolds and bundle constructions

I. Chrysikos

joint work with Vicente Cortés & Jan Gregorovič

Almost hypercomplex/quaternionic skew-Hermitian structures (C.-Gregorovič-Winther – 2022)

• Almost hypercomplex geometries of skew-Hermitian type are geometric structures defined on 4n-dimensional manifolds M (n > 1). They corresponds to pairs (H, ω) , where H is an almost hypercomplex structure and ω is an H-Hermitian almost symplectic form on M. Equivalently, they correspond to reductions of the frame bundle to the structure group $G = SO^*(2n)$,

 $\mathsf{SO}^*(2n) = \mathsf{GL}(n,\mathbb{H}) \cap \mathsf{Sp}(4n,\mathbb{R}) \subset \mathsf{GL}(n,\mathbb{H}) \subset \mathsf{GL}(4n,\mathbb{R}).$

Then, the triple (M, H, ω) is called an almost hypercomplex skew-Hermitian manifold.

• Almost quaternionic geometries of skew-Hermitian type are geometric structures defined on 4ndimensional manifold M (n > 1). They correspond to pairs (Q, ω) , where $Q \subset \text{End}(TM)$ is an almost quaternionic structure and ω is a Q-Hermitian almost symplectic form on M. Equivalently, they correspond to reductions of the frame bundle to the structure group $G = SO^*(2n) Sp(1)$,

$$SO^{*}(2n) Sp(1) := SO^{*}(2n) \times_{\mathbb{Z}_{2}} Sp(1) = (SO^{*}(2n) \times Sp(1))/\mathbb{Z}_{2}.$$

Then, the triple (M, Q, ω) is called an almost quaternionic skew-Hermitian manifold.

Let (M, Q, ω) be an almost quaternionic skew-Hermitian manifold and let $\{I, J, K\}$ be a local admissible basis of the almost quaternionic structure $Q \subset \operatorname{End}(TM)$. We can introduce a globally defined symmetric 4-tensor

$$\Phi := g_I \odot g_I + g_J \odot g_J + g_K \odot g_K \in \Gamma(S^4 T^* M)$$

where

$$g_I := \omega(\cdot, I \cdot), \quad g_J := \omega(\cdot, J \cdot), \quad g_K := \omega(\cdot, K \cdot)$$

• The metrics g_I, g_J, g_K provide the analog of the three local 2-forms $\omega_I, \omega_J, \omega_K$ in almost hypercomplex/quaternionic Hermitian geometries.

• Φ is the analog of the 4-form Ω induced by $\omega_I, \omega_J, \omega_K$ in almost quaternionic Hermitian geometries: $\Omega = \sum_{A=I,J,K} \omega_A \wedge \omega_A.$

Adapted connections to $SO^*(2n) Sp(1)$ -structures

An almost qs-H structure (Q, ω) induces a volume form $\omega^{2n} = \text{vol.}$ There is a unique minimal $SL(n, \mathbb{H}) Sp(1)$ -connection $\nabla^{Q, \text{vol}}$, called the **unimodular Oproiv connection**.

Thm. (C.-Gregorovič-Winther – 2022) Let (M, ω, Q) be an almost qs-H manifold. Let A^{vol} be the (1, 2)-tensor field on M defined by

$$\omega\big(A^{\mathrm{vol}}(X,Y),Z\big) = \frac{1}{2}(\nabla^{Q,\mathrm{vol}}_X\omega)(Y,Z)\,,\quad\forall\;X,Y,Z\in\Gamma(TM)$$

Then, the connection $\nabla^{Q,\omega} = \nabla^{Q,\text{vol}} + A^{\text{vol}}$ is an almost quaternionic skew-Hermitian connection.

Torsion: $T^{Q,\omega} = T^Q + \delta(A^{\text{vol}})$, where T^Q is the torsion of $\nabla^{Q,\text{vol}}$. The adapted connection $\nabla^{Q,\omega}$ is **torsion-free** if and only if

$$T^Q=0\,, \quad {\rm and} \quad
abla^{Q,{
m vol}}\omega=0\,.$$

In other words, $T^{Q,\omega} = 0$ if and only if Q is 1-integrable and $\nabla^{Q,\omega} = \nabla^{Q,\text{vol}}$.

Torsion-free examples

Thm. (C-Gregorovič-Winther – 2022)

The symmetric spaces

 $\mathsf{SO}^*(2n+2)/\operatorname{SO}^*(2n)\operatorname{U}(1)\,,\quad \mathsf{SU}(2+p,q)/(\operatorname{SU}(2)\operatorname{SU}(p,q)\operatorname{U}(1))\,,\quad \mathsf{SL}(n+1,\operatorname{\mathbb{H}})/(\operatorname{GL}(1,\operatorname{\mathbb{H}})\operatorname{SL}(n,\operatorname{\mathbb{H}}))\,,$

the latter two being pseudo-Wolf spaces, are the only (up to covering) symmetric spaces K/L with K semisimple, admitting an invariant torsion-free quaternionic skew-Hermitian structure (Q, ω) .

•. In this case $\nabla^{Q,\omega}$ coincides with the corresponding canonical connection ∇^0 on K/L.

Key results from holonomy theory.

 \rightarrow Observation: Let $\mathfrak{g} \subset \operatorname{End}(\mathscr{V})$ be a semisimple and irreducible subalgebra, where \mathscr{V} is some finite-dimensional vector space over \mathbb{R} or \mathbb{C} .

- Assume that there is a non-degenerate 2-form Ω on \mathscr{V} such that $\mathfrak{g} \subset \mathfrak{sp}(\mathscr{V}, \Omega)$, where $\mathfrak{sp}(\mathscr{V}, \Omega)$ is the Lie algebra of linear symplectomorphisms of (\mathscr{V}, Ω) .
- By semi-simplicity, there exists a \mathfrak{g} -equivariant map

$$\circ:S^2\mathscr{V}^*\cong S^2\mathscr{V}\longrightarrow\mathfrak{g}\,,\quad \circ(x\odot y)=x\circ y\,.$$

• Suppose that for any $A \in \mathfrak{g}$ and some non-zero constant $\kappa \in \mathbb{R}$, the map

$$R_A: \Lambda^2 \mathscr{V} \longrightarrow \mathfrak{g}, \quad R_A(x, y) := \kappa \,\Omega(x, y)A + x \circ Ay - y \circ Ax, \quad x, y \in \mathscr{V},$$

lies in $\mathscr{K}(\mathfrak{g})$.

$$\mathscr{K}(\mathfrak{g}) = \left\{ R \in \bigwedge^2 \mathscr{V}^* \otimes \mathfrak{g} : \mathfrak{S}_{x,y,z} R(x,y) z = 0 \,, \text{ for all } x, y, z \in \mathscr{V} \right\},$$

• Then, the assignment

$$\mathfrak{g} \longrightarrow \mathscr{K}(\mathfrak{g}), \quad A \longmapsto R_A$$

is an isomorphism and \mathfrak{g} is an irreducible (symplectic) Berger algebra.

Prop. (Schwachhöfer, Merkulov-Schwachhöfer 1999) For $n \ge 2$, the Lie algebra $\mathfrak{g} = \mathfrak{so}^*(2n) \oplus \mathfrak{sp}(1)$ is a (non-symmetric) irreducible Berger algebra, and

$$\mathscr{K}(\mathfrak{g})\cong\mathfrak{g}$$
 .

• Fix a quaternionic skew-Hermitian manifold (M, Q, ω) endowed with the torsion-free adapted connection $\nabla := \nabla^{Q,\omega}$. We have $\Omega = \omega$ at any point on M and $\mathfrak{g} = \mathfrak{so}^*(2n) \oplus \mathfrak{sp}(1)$.

Prop. (C.-Cortés-Gregorovič 2024) Let $\circ : S^2 \mathscr{V} \longrightarrow \mathfrak{g}$ be a \mathfrak{g} -equivariant map such that R_A defined above lies in $\mathscr{K}(\mathfrak{g})$ for all $A \in \mathfrak{g}$. Then \circ decomposes as

$$(x \circ y) = c_1 \cdot (x \circ y)_{\mathfrak{so}^*(2n)} + c_2 \cdot (x \circ y)_{\mathfrak{sp}(1)}, \quad \forall \ x, y \in \mathscr{V}$$

where the $\mathfrak{so}^*(2n)$ -part $(x \circ y)_{\mathfrak{so}^*(2n)}$ of $x \circ y$ (respectively, the $\mathfrak{sp}(1)$ -part $(x \circ y)_{\mathfrak{sp}(1)}$) is given by

$$\begin{split} &(x \circ y)_{\mathfrak{so}^*(2n)} &= & \frac{1}{4} \Big(\omega(x, -)y - \sum_{a=1}^3 g_a(x, -)J_a y + \omega(y, -)x - \sum_{a=1}^3 g_a(y, -)J_a x \Big) \in \mathfrak{so}^*(2n) \,, \\ &(x \circ y)_{\mathfrak{sp}(1)} &= & -\frac{1}{2n} \sum_{a=1}^3 g_a(x, y) J_a \in \mathfrak{sp}(1) \,, \end{split}$$

and $c_1 = 2\kappa \neq 0$, $c_2 = (nc_1)/2 = n\kappa \neq 0$. In particular, the tensors on the right-hand side are independent of the admissible basis $\{J_a\}$ for Q.

The expression of the curvature

Corol. (1) For any $x, y, z \in \mathscr{V} = [\mathsf{E} \mathsf{H}] \cong T_m M$, $A \in \mathfrak{so}^*(2n) \oplus \mathfrak{sp}(1)$ and some non-zero $\kappa \in \mathbb{R}$ we have

$$\begin{split} R_A^{Q,\omega}(x,y)z &= \kappa \,\omega(x,y)Az + \frac{\kappa}{2} \Big(\omega(x,z)Ay - \sum_{a=1}^3 g_a(x,z)J_aAy + \omega(Ay,z)x - \sum_{a=1}^3 g_a(Ay,z)J_ax \Big) \\ &- \frac{\kappa}{2} \Big(\omega(y,z)Ax - \sum_{a=1}^3 g_a(y,z)J_aAx + \omega(Ax,z)y - \sum_{a=1}^3 g_a(Ax,z)J_ay \Big) \\ &- \frac{\kappa}{2} \sum_{a=1}^3 \big(g_a(x,Ay) - g_a(y,Ax) \big) J_az \,. \end{split}$$

(2) For any (torsion-free) qs-H manifold (M, Q, ω) we can find a section A of the adjoint bundle $\mathfrak{g}_{\mathbb{Q}} = \mathbb{Q} \times_{G} \mathfrak{g} \subset T^*M \otimes TM$, such that the curvature $R^{Q,\omega} \in \Gamma(\wedge^2 T^*M \otimes \mathfrak{g}_{\mathbb{Q}})$ of $\nabla^{Q,\omega}$ corresponds to the section $R^{Q,\omega}_A$ of the bundle over M with fiber $\mathscr{K}(\mathfrak{g})$.

(3) The Ricci tensor $\operatorname{Ric}_{A}^{Q,\omega}(y,z) := \operatorname{Tr} \{x \longmapsto R_{A}^{Q,\omega}(x,y)z\}$ associated to $R_{A}^{Q,\omega}$ is given by

$$\operatorname{Ric}_A^{Q,\omega}(y,z) = (2n+1)\kappa\,\omega(Ay,z) + 2n\kappa\sum_a g_a(y,z)\operatorname{Tr}(J_aA) - \kappa\sum_a \omega(J_aAJ_ay,z)$$

for any $y, z \in \mathscr{V} = [\mathsf{E} \mathsf{H}] \cong T_m M$ and $A \in \mathfrak{so}^*(2n) \oplus \mathfrak{sp}(1)$.

Thm. (C.-Cortés-Gregorovič 2024) A 4n-dimensional quaternionic skew-Hermitian manifold (M, Q, ω) with non-degenerate Q-Hermitian Ricci tensor is a quaternionic Kähler locally symmetric space. In particular, if M is simply connected and complete, then (M, Q, ω) is one of the spaces

$$\mathsf{SU}(2+p,q)/(\mathsf{SU}(2)\,\mathsf{SU}(p,q)\,\mathsf{U}(1))\,,\quad \, \mathsf{SL}(n+1,\mathbb{H})/(\mathsf{GL}(1,\mathbb{H})\,\mathsf{SL}(n,\mathbb{H}))\,.$$

In this case we have

$$\operatorname{Ric}^{Q,\omega}(X,Y)=2(n+2)\kappa\,\omega(AX,Y)$$

for any $X, Y \in \Gamma(TM)$, for some $A \in \mathfrak{so}^*(2n)$ and some non-zero constant κ .

Exm.

$$M=K/L=\mathsf{SU}(2+p,q)/(\mathsf{SU}(2)\,\mathsf{SU}(p,q)\,\mathsf{U}(1))$$

- $\mathfrak{k} = \mathfrak{l} \oplus \mathfrak{m}$ symmetric reductive decomposition;
- $\chi(L) \cap Sp(1) = Sp(1) \Longrightarrow K$ -invariant quaternionic structure Q on M;
- g = restriction of Killing form on \mathfrak{m} induces a K-invariant quaternionic Kähler metric;
- Let I be the K-invariant complex structure on M, induced by the U(1)-component. Then $I \notin \Gamma(Q)$;

$$A = -\frac{c}{2(n+2)\kappa}I, \quad c = \frac{\operatorname{Scal}^g}{4n}.$$

The Swann bundle $\hat{M} \to M$ over (M, Q, ω)

- Fix a quaternionic skew-Hermitian manifold $(M^{4n}, Q, \omega, \nabla = \nabla^{Q, \omega} = \nabla^{Q, \text{vol}})$ (torsion-free) with n > 1, and let $\pi : \mathcal{Q} \to M$ be the reduced frame bundle
- We consider the **fiber product bundle** over M

$$\hat{M} = S_0 \times_M S = \{ (m, (v, s)) \in M \times (S_0 \times S) : m = \pi_{S_0}(v) = \pi_S(s) \} \cong \Delta^* (S_0 \times S),$$

where $\triangle: M \to M \times M$ is the diagonal map and

- $\pi_S : S \to M$ is the principal SO(3)-bundle of admissible frames of the quaternionic structure Q. This satisfies $S \cong Q/SO^*(2n)$
- $\pi_{S_0} : S_0 \to M$ is the principal \mathbb{R}_+ -bundle of positive densities, $S_0 = (\wedge^{4n}(T^*M) \setminus \{0\}) / \mathbb{Z}_2$. This bundle is trivial, i.e., $S_0 \cong M \times \mathbb{R}_+$.
- $S_0 \times S$ is a principal bundle over $M \times M$ with structure group $\mathbb{R}_+ \times SO(3) \cong \mathbb{H}^{\times} / \mathbb{Z}_2$

Def. The principal bundle \hat{M} is called the **Swann bundle** over M, and we denote by $\hat{\pi} : \hat{M} \to M$ the bundle projection. The Swann bundle is a principal $\mathbb{H}^{\times} / \mathbb{Z}_2$ -bundle over M. **Goal:** Study the geometry on the total space of $\hat{\pi} : \hat{M} \to M$, induced by the pair (Q, ω) on M.

 \blacksquare Our quaternionic skew-Hermitian connection $\nabla = \nabla^{Q,\omega}$ induces a principal connection on Q and a principal connection on S, with connection 1-forms

$$\gamma: T\mathcal{Q} \to \mathfrak{so}^*(2n) \oplus \mathfrak{sp}(1) \,, \qquad \theta: TS \to \mathfrak{sp}(1) \,,$$

respectively. We have $\theta = \sum_{a=1}^{3} \theta_a e_a$ and $\gamma = \gamma_+ + \gamma_-$, with γ_+ taking values in $\mathfrak{so}^*(2n)$ and $\gamma_- = \theta$ taking values in $\mathfrak{sp}(1)$.

• Consider the connection 1-form $\hat{\theta}$ on \hat{M} with values in $\mathbb{H} \cong \mathbb{R} \oplus \mathfrak{sp}(1)$,

$$\hat{\theta} := \Delta_{\sharp}^*(\theta_0 \circ pr_{TS_0}, \theta \circ pr_{TS})$$

where $\Delta_{\sharp}: \hat{M} \to S_0 \times S$ is the canonical bundle morphism induced by Δ .

Prop. (C.-Cortés-Gregorovič 2024) The Swann bundle $\hat{\pi}$: $\hat{M} \to M$ over a quaternionic-skew Hermitian manifold (M^{4n}, Q, ω) , satisfies

$$\hat{M} \cong S \times_{\mathsf{SO}(3)} (\mathbb{R}_+ \times \mathsf{SO}(3)) \cong \mathbb{R}_+ \times S \cong \mathcal{Q} \times_{\mathsf{SO}^*(2n)} \mathsf{Sp}(1) (\mathbb{H}^* / \mathbb{Z}_2).$$

Moreover, the connection 1-forms $\hat{\theta}$ and θ are such that

$$\hat{\theta} = t^{-1} \operatorname{d} t - \theta = \theta_0 - \sum_{a=1}^3 \theta_a e_a \,. \quad (*)$$

The canonical hypercomplex structure on \hat{M}

Relatively to $\hat{\theta}$ and $\hat{\pi}$ we have the direct sum decomposition

$$T\hat{M} = \hat{\mathscr{V}} \oplus \hat{\mathscr{H}}, \quad \hat{\mathscr{V}} := \mathrm{d}\,\hat{\pi}, \quad \hat{\mathscr{H}} := \mathrm{Ker}\,\hat{\theta}.$$

• Denote by \widetilde{U} the fundamental vector field induced by an element $U \in \mathbb{H} = \mathbb{R} \oplus \mathfrak{so}(3)$ in the Lie algebra of the structure group of $\hat{\pi}$, that is,

$$\widetilde{U}_u = \frac{\mathrm{d}}{\mathrm{d}\,t}|_{t=0} \rho_{\exp tU}(u) \in T_u \hat{M} \,, \quad u = (m, (v, s)) \in \hat{M} \,, \qquad (\rho = \lambda_0 \times \lambda)$$

Set $Z_a := \tilde{e}_a$, for a = 1, 2, 3 and $Z_0 := \tilde{e}_0$, where as usual $\{e_1, e_2, e_3\}$ is the basis of $\mathfrak{so}(3) \cong \mathfrak{sp}(1) \cong \operatorname{Im}(\mathbb{H}) \cong \mathbb{R}^3$ and $e_0 = 1 \in \mathbb{R} \cong T_1 \mathbb{R}_+$.

• We now introduce the triple $\hat{H} := (\hat{I}_1, \hat{I}_2, \hat{I}_3)$ consisting of the endomorphisms $\hat{I}_i : T\hat{M} \to T\hat{M}$

$$\begin{cases} \hat{I}_a Z_0 = -Z_a \,, \quad \hat{I}_a Z_a = Z_0 \,, \quad \hat{I}_a Z_b = Z_c \,, \quad \hat{I}_a Z_c = -Z_b \\ (\hat{I}_a)_u(Y) = (I_a(\hat{\pi}_*Y))_u^{\hat{h}} \,, \quad \forall \ Y \in \bar{\mathscr{H}}_u, \end{cases}$$

where $u = (m, (v, s)) \in \hat{M}$, $s = (I_1, I_2, I_3) \in S$, and the upperscript \hat{h} denotes the horizontal lift with respect to $\hat{\theta}$.

Thm. (C.-Cortés-Gregorovič 2024) Let (M^{4n}, Q, ω) (n > 1) be a quaternionic skew-Hermitian manifold and let $\hat{\pi} : \hat{M} \to M$ be the Swann bundle over M. Then, the almost hypercomplex structure \hat{H} on \hat{M} defined above is **1-integrable**.

Induced SO^{*}(2(n+1))-structures on the Swann bundle \hat{M} over (M, Q, ω)

• First step: Description of \hat{H} -Hermitian 2-forms on the horizontal part of the decomposition $T\hat{M} = \hat{\mathscr{R}} \oplus \hat{\mathscr{V}}$. These are induced by the scalar 2-form ω downstairs...

Prop. (C.-Cortés-Gregorovič 2024) Let (M, Q, ω) and $\hat{\pi} : \hat{M} \to M$ be as above, and set $G := \mathbb{R}_+ \times SO(3)$.

(1) The pullback

$$\hat{\omega} := \hat{\pi}^*(\omega) \in \Omega^2(\hat{M})$$

defines a horizontal, G-invariant, closed 2-form on \hat{M} , satisfying $\mathscr{L}_Z \hat{\omega} = 0$ for any vertical vector $Z \in \hat{\mathscr{V}}$.

(2) The restriction $\hat{\omega}_{\hat{\mathscr{H}}} := \hat{\omega}|_{\hat{\mathscr{H}} \times \hat{\mathscr{H}}}$ of $\hat{\omega}$ to the horizontal subspace $\hat{\mathscr{H}} = \operatorname{Ker} \hat{\theta} \subset T\hat{M}$ is non-degenerate, closed and \hat{H} -Hermitian.

• Second step: Description of \hat{H} -Hermitian 2-forms on the vertical part of the decomposition $T\hat{M} = \hat{\mathcal{H}} \oplus \hat{\mathcal{V}}$.

 \twoheadrightarrow We consider the $\mathbb H\text{-valued}$ 1-form α on $\hat M$

$$\alpha := \frac{1}{t}\hat{\theta} = \frac{1}{t^2} \,\mathrm{d}\, t + \frac{1}{t}\theta \in \Omega^1(\hat{M}; \mathbb{H}) \,.$$

Obviously, we have

 $\alpha = \alpha_0 + \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3$

for some real-valued 1-forms α_a on \hat{M} . Since $\theta = \sum_{a=1}^{3} \theta_a e_a$ we get

$$\alpha_0 = \frac{1}{t^2} dt, \quad \alpha_a = \frac{1}{t} \theta_a, \quad \forall \ a = 1, 2, 3.$$

Prop. (C.-Cortés-Gregorovič 2024) The space of all \hat{H} -Hermitian 2-forms β with $\beta|_{\bar{\mathscr{H}}\times\bar{\mathscr{H}}} = 0$ and $\beta|_{\bar{\mathscr{H}}\times\bar{\mathscr{V}}} = 0$, is 3-dimensional. It generated by the 2-forms

$$\beta_a = \alpha_0 \wedge \alpha_a + \alpha_b \wedge \alpha_a$$

for any cyclic permutation of (a, b, c) of (1, 2, 3).

• Set

$\tilde{\omega} := \hat{\omega} + \beta$

where $\hat{\omega} = \hat{\pi}^*(\omega)$, $\beta = \sum_{a=1}^3 f_a \beta_a$ for some smooth functions f_a on \hat{M} with $f_a \neq 0$ for at least one a.

Thm. (C.-Cortés-Gregorovič 2024) If $(M, Q, \omega, \nabla^{Q, \omega})$ is non flat, i.e., $R^{Q, \omega} \neq 0$, then there is no non-degenerate \hat{H} -Hermitian 2-form β on the Swann bundle \hat{M} , i.e., scalar 2-form with respect to \hat{H} , such that $\beta|_{\hat{\mathcal{H}} \times \hat{\mathcal{H}}} = 0$, $\beta|_{\hat{\mathcal{H}} \times \hat{\mathcal{Y}}} = 0$ and $d\beta = 0$.

Proof (Hints): We have $\Omega = d \theta + \theta \wedge \theta$ as the part of the curvature with values in $\mathfrak{sp}(1)$ (and so the curvature induced by the connection 1-form θ).

• We have $\Omega = \Omega_1 e_1 + \Omega_2 e_2 + \Omega_3 e_3$ and $\beta = f_1 \beta_1 + f_2 \beta_2 + f_3 \beta_3$ for some smooth functions f_i on \hat{M} .

$$d\beta = \sum_{a=1}^{3} (d f_a \wedge \beta_a + f_a d \beta_a)$$

=
$$\sum_{a=1}^{3} d f_a \wedge \beta_a - \frac{1}{t} \alpha_0 \wedge (f_1 \Omega_1 + f_2 \Omega_2 + f_3 \Omega_3) + \frac{1}{t} \sum_{cycl} f_a (\Omega_b \wedge \alpha_c - \Omega_c \wedge \alpha_b).$$

From this relation we deduce that $d \beta = 0$ if and only if the following conditions hold:

$$\sum_{a=1}^{3} (d f_a \wedge \beta_a) = 0, \quad \sum_{a=1}^{3} f_a \Omega_a = 0,$$
$$f_2 \Omega_3 - f_3 \Omega_2 = 0, \quad -f_1 \Omega_3 + f_3 \Omega_1 = 0, \quad f_1 \Omega_2 - f_2 \Omega_1 = 0$$

Corol. (C.-Cortés-Gregorovič 2024) The pair $(\hat{H}, \tilde{\omega})$ defines a SO^{*}(2(n + 1))-structure on the total space \hat{M} of the Swann bundle over M, which is in general of **type** \mathscr{X}_{3457} . If $R^{Q,\omega} \neq 0$, then the SO^{*}(2(n + 1))-structure $(\hat{H}, \tilde{\omega})$ has nontrivial torsion in component \mathscr{X}_{34} , i.e., it is not of type \mathscr{X}_{57} .

References

- I. Chrysikos, V. Cortés, J. Gregorovič, *Curvature of quaternionic skew-Hermitian manifolds and bundle constructions*, Mathematische Nachrichten, (2024), 1–26.
- I. Chrysikos, J. Gregorovič, H. Winther: *Differential geometry of* SO*(2n)-type structures *integrability*, Analysis and Mathematical Physics, Vol 12 (93), (2022), 1–52.
- I. Chrysikos, J. Gregorovič, H. Winther: *Differential geometry of* SO*(2n)-type structures, Annali di Matematica Pura ed Applicata (1923 -), (2022) 201:2603–2662.

Thank you for your attention!