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Almost hypercomplex/quaternionic skew-Hermitian structures
(C.-Gregorovi¢-Winther — 2022)

® Almost hypercomplex geometries of skew-Hermitian type are geometric structures defined on
4n-dimensional manifolds M (n > 1). They corresponds to pairs (H,w), where H is an almost
hypercomplex structure and w is an H-Hermitian almost symplectic form on M.

Equivalently, they correspond to reductions of the frame bundle to the structure group G = SO*(2n),

SO*(2n) = GL(n,H) N Sp(4n,R) C GL(n,H) C GL(4n,R).

“a Then, the triple (M, H,w) is called an almost hypercomplex skew-Hermitian manifold.

® Almost quaternionic geometries of skew-Hermitian type are geometric structures defined on 4n-
dimensional manifold M (n > 1). They correspond to pairs (Q,w), where Q C End(T'M) is an
almost quaternionic structure and w is a ()-Hermitian almost symplectic form on M.

Equivalently, they correspond to reductions of the frame bundle to the structure group G = SO*(2n) Sp(1),

SO*(2n) Sp(1) := SO™(2n) xz, Sp(1) = (SO*(2n) x Sp(1))/Z, .

. Then, the triple (M, Q,w) is called an almost quaternionic skew-Hermitian manifold.



Let (M,Q,w) be an almost quaternionic skew-Hermitian manifold and let {/,J, K} be a local
admissible basis of the almost quaternionic structure () C End(7T'M). We can introduce a globally
defined symmetric 4-tensor

CD:=g[®g[—|—gj®gj+g[(®g[(EF(S4T*M)

where

% The metrics g1, g7, gi provide the analog of the three local 2-forms w;, w;, wg in almost hyper-
complex/quaternionic Hermitian geometries.

% O is the analog of the 4-form (2 induced by w;, w;, wx in almost quaternionic Hermitian geometries:

)= Y A=T.J K WA N\ WA.



Adapted connections to SO*(2n) Sp(1)-structures

2n

An almost gs-H structure (Q),w) induces a volume form w*" = vol. There is a unique minimal

SL(n,H) Sp(1)-connection V¥°! called the unimodular Oproiu connection.

Thm. (C.-Gregorovi¢-Winther — 2022)
Let (M, w, Q) be an almost gs-H manifold. Let A" be the (1,2)-tensor field on M defined by

Ww(A(X,Y), Z) = (V)Y Z), VXY, Zel(TM).

1
2
Then, the connection V¥* = V&@vol 1 Avlis an almost quaternionic skew-Hermitian connection.

Torsion: 790w = T + 5(AV°'), where T is the torsion of V0. The adapted connection V¥ is
torsion-free if and only if

T =0, and V%W =0.

In other words, 79 = 0 if and only if Q) is l-integrable and V@« = v@vol,



Torsion-free examples

Thm. (C-Gregorovi¢c-Winther — 2022)

The symmetric spaces

SO*(2n42)/ SO*(2n) U(1),  SU(2+p, ¢)/(SU(2)SU(p,q) U(1)),  SL(n+1,H)/(GL(1, H)SL(n, H)),

the latter two being pseudo-Wolf spaces, are the only (up to covering) symmetric spaces K /L with
K semisimple, admitting an invariant torsion-free quaternionic skew-Hermitian structure (Q,w).

e. In this case V% coincides with the corresponding canonical connection V° on K/L.



Key results from holonomy theory.

= Observation: Let g C End(?") be a semisimple and irreducible subalgebra, where ¥ is some
finite-dimensional vector space over R or C.

e Assume that there is a non-degenerate 2-form Q on ¥ such that g C sp(?, Q), where sp(?", Q)
is the Lie algebra of linear symplectomorphisms of (7", Q).

e By semi-simplicity, there exists a g-equivariant map

o SPYrE S — g, olx@y)=x0y.
e Suppose that for any A € g and some non-zero constant x € IR, the map
Ra: NV — g, Rulr,y) =sQz,y)A+2z0Ay —yoAx, zycV,
lies in F (g).

2
F(g) ={Re NV " ®@g:6,,.Rx,y)z=0, foral z,y,z € ¥V},
e Then, the assignment
g— F(g), A— Ry

is an isomorphism and g is an irreducible (symplectic) Berger algebra.

Prop. (Schwachhofer, Merkulov-Schwachhofer 1999) For n > 2, the Lie algebra g = s0*(2n) @& sp(1)
is a (non-symmetric) irreducible Berger algebra, and

F(9)=g.



® Fix a quaternionic skew-Hermitian manifold (M, @Q,w) endowed with the torsion-free adapted

connection V := V%« We have Q) = w at any point on M and g = 50%(2n) @ sp(1).

Prop. (C.-Cortés-Gregorovi¢ 2024) Let o : S*¥ — g be a g-equivariant map such that R4 defined
above lies in % (g) for all A € g. Then o decomposes as

(zoy)=c1(TOoY)sor2n) T 2 (TOY)gp(y, VT, Y€V,
where the 50%(2n)-part (z 0 y)so+(25) Of @ 0 y (respectively, the sp(1)-part (x 0 y)sy(1)) is given by

1 3 3
(T 0 Y)sor(2n) = 4<w(fv, —)y — Py ga(T, =) Joy + wly, =)z — x 9a(Y; —)Ja:v> € 507(2n),
1 3
(oY) = —5 2 a ga(,y)Ja € 5p(1),

and ¢; = 2k # 0, ¢o = (ncy)/2 = nk # 0. In particular, the tensors on the right-hand side are
independent of the admissible basis {J,} for Q)



The expression of the curvature

Corol. (1) For any z,y,z € ¥ = [EH] = T,,M, A € s0*(2n) ® sp(1) and some non-zero k € R
we have

3 3
R%w@?a ?J)Z = /iw(x, y)Az + §<W($, Z)Ay - ga(x, Z)JaAy + W(Aya Z)I - > ga(Aya Z)Jax>

3 3
—/;(w(y, 2)Ax — Y guly, 2)JAx + w(Azx, 2)y — > gu(Ax, Z)Jay>
a=1 a=1

3
; g (9a(@, AYy) — galy, Az))Joz

(2) For any (torsion-free) gs-H manifold (M, Q),w) we can find a section A of the adjoint bundle
ge = @xgg C T*M ®TM, such that the curvature RY* € I'(A2T*M ® gg) of V@ corresponds

to the section RS of the bundle over M with fiber % (g).
(3) The Ricci tensor Rici™(y, z) == Tr{z —> RY“(z, y)z} associated to RY* is given by

RicS™ (y, 2) = 2n + Drw(Ay, 2) + 2ne Y ga(y, 2) Tr(J,A) — kY w(J,Aduy, 2)

foranyy,z € ¥ =[EH| = T,,M and A € s0*(2n) & sp(1).



Thm. (C.-Cortés-Gregorovic 2024) A 4n-dimensional quaternionic skew-Hermitian manifold (M, Q, w)
with non-degenerate ()-Hermitian Ricci tensor is a quaternionic Kahler locally symmetric space. In
particular, if M is simply connected and complete, then (M, Q),w) is one of the spaces

SU(2+ p,q)/(SU(2)SU(p,q)U(1)), SL(n+1,H)/(GL(1,H)SL(n,H)).

In this case we have
RicY“(X,Y) = 2(n+2)kw(AX,Y)

for any X, Y € I'(T'M), for some A € s0*(2n) and some non-zero constant .

Exm.
M = K/L=SU(2+p,q)/(SU(2)SU(p, q) U(1))

o t =[P m symmetric reductive decomposition;

e x(L)NSp(1) =Sp(1) = K-invariant quaternionic structure ) on M,

e g = restriction of Killing form on m induces a K-invariant quaternionic Kahler metric;

e Let [ be the K-invariant complex structure on M, induced by the U(1)-component. Then I ¢ I'(Q);

c Scaly

2(n +2)k 4n




The Swann bundle M — M over (M, Q,w)

e Fix a quaternionic skew-Hermitian manifold (M*",Q,w,V = V9% = V@) (torsion-free) with
n > 1, and let m: @ — M be the reduced frame bundle
e We consider the fiber product bundle over M

M =Sy xS ={(m,(v,s) € Mx(Syx8):m=mng(v)=ms(s)} =ZA*(Sy x 3),
where A : M — M x M is the diagonal map and

e 75 :S — M is the principal SO(3)-bundle of admissible frames of the quaternionic structure
Q). This satisfies S = @/ SO"(2n)

e mg, : Sy — M is the principal R -bundle of positive densities, Sy = (A"(T*M)\{0})/ Z>.
This bundle is trivial, i.e., So = M x R.,.

e Sy x S is a principal bundle over M x M with structure group R, x SO(3) = H* / Z,

The principal bundle M is called the Swann bundle over M, and we denote by 7 : M — M
the bundle projection. The Swann bundle is a principal H* / Zs-bundle over M.
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Goal: Study the geometry on the total space of 7 : M — M, induced by the pair (Q,w) on M.

"= Qur quaternionic skew-Hermitian connection V = V% induces a principal connection on @ and
a principal connection on S, with connection 1-forms

v:TQ — s0"(2n) & sp(1), 0:TS — sp(l),

respectively. We have § = ¥3_; 0,e, and v = v, +~_, with ~, taking values in 50*(2n) and v_ = 0

taking values in sp(1).
e Consider the connection 1-form 6§ on M with values in H 2 R @sp(1),

0 =A% (0 o prrs,, 0 o prrs)

where A; : M — Sy x S is the canonical bundle morphism induced by A.

Prop. (C.-Cortés-Gregorovi¢ 2024) The Swann bundle # : M — M over a quaternionic-skew
Hermitian manifold (M, Q,w), satisfies

M = S x50 (R x SO(3)) = Ry xS = @ X0+ sp(1) (H / Za) .

Moreover, the connection 1-forms 0 and 0 are such that

~ 3
f=ttdt—0=0— > O.eq. (¥
a=1
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The canonical hypercomplex structure on M

Relatively to 0 and # we have the direct sum decomposition
T]\A/[:%A@?g, v =dnr, H = Kerf.

e Denote by U the fundamental vector field induced by an element U € H = R @s0(3) in the Lie
algebra of the structure group of 7, that is,

_ d X A
U, = dt‘t:opexth(U) ceT, M, u=(m,(v,s)) e M, (p=Xo X \).

~

Set Z, = é,, for a = 1,2,3 and Z; := ¢éj, where as usual {ey,eo, e3} is the basis of s0(3)
sp(l) 2 Im(H) 2 R>andeg =1 € R TR,

e We now introduce the triple H := (fl, I, fg) consisting of the endomorphisms I, : TM — T M

2= ~Za, 1Zu=2, 1Zy=2., 1.2.=~2,
{ (Tu(Y) = (LAY )5, VY €9,

where u = (m, (v,s)) € M, s = (I}, I, I3) € S, and the upperscript " denotes the horizontal lift

with respect to 0.

Thm. (C.-Cortés-Gregorovi¢ 2024) Let (M* Q,w) (n > 1) be a quaternionic skew-Hermitian

manifold and let # : M — M be the Swann bundle over M. Then, the almost hypercomplex

structure H on M defined above is 1-integrable.
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Induced SO*(2(n + 1))-structures on the Swann bundle M over (M, Q,w)

e First step: Description of H-Hermitian 2-forms on the horizontal part of the decomposition

TM = % & 7 . These are induced by the scalar 2-form w downstairs...

Prop. (C.-Cortés-Gregorovi¢ 2024) Let (M,Q,w) and # : M — M be as above, and set G :=
R, x SO(3).
(1) The pullback

& = 7% (w) € QX(M)
defines a horizontal, G-invariant, closed 2-form on M satisfying £, = 0 for any vertical vector
Zev.
(2) The restriction &y, = @|,; o, of & to the horizontal subspace H = Kerd C TM is non-

degenerate, closed and H-Hermitian.
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e Second step: Description of H-Hermitian 2-forms on the vertical part of the decomposition
TM=% &7 .
= \We consider the H-valued 1-form o on M
1~ 1 1 N
= 0= dt+-0€ Q(MH).
ai=_0=5dt+- (M;H)

Obviously, we have
a = o + €1 + ey + (zes
for some real-valued 1-forms o, on M. Since 6 = 22:1 0., we get

1 1
—dt, aa:tea, Va=1,2,3.

oy =
t2

Prop. (C.-Cortés-Gregorovi¢ 2024) The space of all H-Hermitian 2-forms 5 with 5], 5 = 0 and
Bl «57 = 0, is 3-dimensional. It generated by the 2-forms

Ba = g N\ g + ap A Qi

for any cyclic permutation of (a, b, ¢) of (1,2,3).
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e Set
O=0+0
where & = 7*(w), B8 = £3_; fu3, for some smooth functions f, on M with f, # 0 for at least one

a.

Thm. (C-Cortés-Gregorovi¢ 2024) If (M, Q,w, V?¥) is non flat, i.e., R%“ = 0, then there is no
non-degenerate H-Hermitian 2-form [ on the Swann bundle M i.e., scalar 2-form with respect to
H, such that Bl =0, Blgpyy =0and d g =0.

= Proof (Hints): We have (2 = d 0 + 6 A 0 as the part of the curvature with values in sp(1) (and so
the curvature induced by the connection 1-form 6).
o We have (2 = (211 + (9ea + (3e3 and 8 = f1581 + fof2 + f333 for some smooth functions f; on

M.
3
dﬁ - z::(dfa/\ﬂa‘l‘fadﬂa)
3 1
= ) dfa/\ﬁa—tOéo/\(le1+f292+f3Qs)+t Zlfa(Qb/\@c—Q e\ ag).
a=1 cyc

From this relation we deduce that d 3 = 0 if and only if the following conditions hold:

3 3
Z(dfa/\ﬁa)zoa zz:lfaQa:Oa

a=1
folds — f3Sda =0, —fills+ f3 =0, fifda — fol1 =0.
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Corol. (C.-Cortés-Gregorovi¢ 2024) The pair (H, o) defines a SO*(2(n + 1))-structure on the total
space M of the Swann bundle over M, which is in general of type 2357, If RY% =£ 0, then the

A

SO*(2(n + 1))-structure (H, @) has nontrivial torsion in component 234, i.e., it is not of type 7.
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Thank you for your attention!
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