Principal bundles and differential structures in noncommutative geometry

Srní, Czech Republic.

Antonio Del Donno

January 20, 2025

Differential geometry dictionary

	Classical geometry	Quantum geometry
observables	smooth manifold <i>M</i>	associative unital algebra A
differential forms	cotangent bundle $\Lambda^{\bullet}T^*M$	DGA $\Omega^{\bullet} = \bigoplus_{k \ge 0} \Omega^k$
symmetry	Lie group action $M \times G \rightarrow M$	Hopf algebra coaction $\Delta_A \colon A \to A \otimes H$
principal bundle	$\pi \colon P \xrightarrow{\bigcirc G} M$ $P \times G \xrightarrow{\cong} P \times_M P$	Quantum principal bundle

(Lost) Literature

We revisit the quantum principal bundle formalism of **Mićo Đurđević**, in particular

- Đurđević, M.: *Geometry of Quantum Principal Bundles II Extended Version*. Rev. Math. Phys. **9**, 5 (1997) 531-607.
- Đurđević, M.: *Quantum Principal Bundles as Hopf-Galois Extensions*. Preprint arXiv:q-alg/9507022.
- Đurđević, M.: *Quantum Gauge Transformations and Braided Structure* on *Quantum Principal Bundles*. Preprint arXiv:q-alg/9605010.

A reworked version (including new non-trivial examples) is

• Del Donno, A., Latini, E. and Weber, T.: *On the Đurđević approach to quantum principal bundles*. Preprint arXiv:2404.07944.

1. Differential structures over algebras

2. Hopf–Galois extensions

3. Differential calculi on quantum principal bundles

Differential structures over algebras

Let A be a \mathbb{K} -algebra.

Differential structures over algebras

Let A be a \mathbb{K} -algebra.

Definition

A first order differential calculus (FODC) (Γ , d) over A is the datum of:

- 1. an A-bimodule Γ ;
- 2. a linear map $d : A \to \Gamma$ satisfying the Leibniz rule d(ab) = (da)b + adb for every $a, b \in A$;
- 3. a surjectivity condition $\Gamma = AdA$, i.e. $\Gamma = \text{span}\{adb : a, b \in A\}$.

Differential structures over algebras

Let A be a \mathbb{K} -algebra.

Definition

A first order differential calculus (FODC) (Γ , d) over A is the datum of:

- 1. an A-bimodule Γ ;
- 2. a linear map $d : A \to \Gamma$ satisfying the Leibniz rule d(ab) = (da)b + adb for every $a, b \in A$;
- 3. a surjectivity condition $\Gamma = AdA$, i.e. $\Gamma = \operatorname{span}\{adb : a, b \in A\}$.

Definition

A differential calculus on a \mathbb{K} -algebra A is a differential graded algebra $(\Omega^{\bullet}, \wedge, d)$ which is generated in degree zero and such that $\Omega^0 = A$. The former means that

$$\Omega^{k} = \operatorname{span}_{\mathbb{K}} \{ a^{0} \mathrm{d} a^{1} \wedge \cdots \wedge \mathrm{d} a^{k} \colon a^{0}, \ldots, a^{k} \in A \}.$$

We call elements of Ω^k differential *k*-forms.

• Let A a \mathbb{K} -algebra and (Γ, d) a FODC over A.

- Let A a \mathbb{K} -algebra and (Γ , d) a FODC over A.
- Build up the tensor product algebra

$$\Gamma^{\otimes_A} = \bigoplus_{n=0}^{\infty} \Gamma^{\otimes_A^n} = A \oplus \Gamma \oplus (\Gamma \otimes_A \Gamma) \oplus \dots,$$

- Let A a \mathbb{K} -algebra and (Γ , d) a FODC over A.
- Build up the tensor product algebra

$$\Gamma^{\otimes_A} = \bigoplus_{n=0}^{\infty} \Gamma^{\otimes_A^n} = A \oplus \Gamma \oplus (\Gamma \otimes_A \Gamma) \oplus \dots,$$

• Consider the graded ideal $S^{\wedge} \subseteq \Gamma^{\otimes_A}$, generated by elements $\sum_i da^i \otimes_A db^i$ where $a^i, b^i \in A$, such that $\sum_i a^i db^i = 0$.

- Let A a \mathbb{K} -algebra and (Γ , d) a FODC over A.
- Build up the tensor product algebra

$$\Gamma^{\otimes_A} = \bigoplus_{n=0}^{\infty} \Gamma^{\otimes_A^n} = A \oplus \Gamma \oplus (\Gamma \otimes_A \Gamma) \oplus \dots,$$

- Consider the graded ideal $S^{\wedge} \subseteq \Gamma^{\otimes_A}$, generated by elements $\sum_i da^i \otimes_A db^i$ where $a^i, b^i \in A$, such that $\sum_i a^i db^i = 0$.
- Define accordingly the graded associative unital algebra Γ[∧] := Γ^{⊗_A}/S[∧], with induced product ∧.

- Let A a \mathbb{K} -algebra and (Γ , d) a FODC over A.
- Build up the tensor product algebra

$$\Gamma^{\otimes_A} = \bigoplus_{n=0}^{\infty} \Gamma^{\otimes_A^n} = A \oplus \Gamma \oplus (\Gamma \otimes_A \Gamma) \oplus \dots,$$

- Consider the graded ideal $S^{\wedge} \subseteq \Gamma^{\otimes_A}$, generated by elements $\sum_i da^i \otimes_A db^i$ where $a^i, b^i \in A$, such that $\sum_i a^i db^i = 0$.
- Define accordingly the graded associative unital algebra Γ[∧] := Γ^{⊗_A}/S[∧], with induced product ∧.
- Γ^{\wedge} is a differential calculus over A.

- Let A a \mathbb{K} -algebra and (Γ , d) a FODC over A.
- Build up the tensor product algebra

$$\Gamma^{\otimes_A} = \bigoplus_{n=0}^{\infty} \Gamma^{\otimes_A^n} = A \oplus \Gamma \oplus (\Gamma \otimes_A \Gamma) \oplus \dots,$$

- Consider the graded ideal $S^{\wedge} \subseteq \Gamma^{\otimes_A}$, generated by elements $\sum_i da^i \otimes_A db^i$ where $a^i, b^i \in A$, such that $\sum_i a^i db^i = 0$.
- Define accordingly the graded associative unital algebra $\Gamma^{\wedge} := \Gamma^{\otimes_{\mathcal{A}}}/S^{\wedge}$, with induced product \wedge .
- Γ^{\wedge} is a differential calculus over A.

Theorem

Let $(\Omega^{\bullet}, \tilde{\wedge}, \tilde{d})$ be any differential calculus on A such that $\Omega^1 = \Gamma$ and $\tilde{d}|_A = d$. There exists a surjective morphism $\Gamma^{\wedge} \to \Omega^{\bullet}$ of differential graded algebras. In particular, $(\Omega^{\bullet}, \tilde{\wedge}, \tilde{d})$ is a quotient of $(\Gamma^{\wedge}, \wedge, d)$.

Covariant FODCi

From now we fix a Hopf algebra H and a right H-comodule algebra A.

Covariant FODCi

From now we fix a Hopf algebra H and a right H-comodule algebra A.

Definition

A first order differential calculus (Γ, d) on a right H-comodule algebra (A, Δ_A) is called right H-covariant if Γ is a right H-covariant A-bimodule with right H-coaction $\Delta_{\Gamma} : \Gamma \to \Gamma \otimes H$ such that the differential $d : A \to \Gamma$ is right H-colinear:

$$\Delta_{\Gamma} \circ \mathrm{d} = (\mathrm{d} \otimes \mathsf{id}) \circ \Delta_{A}.$$

Similarly for left *H*-covariant and *H*-bicovariant calculi.

Covariant FODCi

From now we fix a Hopf algebra H and a right H-comodule algebra A.

Definition

A first order differential calculus (Γ, d) on a right H-comodule algebra (A, Δ_A) is called right H-covariant if Γ is a right H-covariant A-bimodule with right H-coaction $\Delta_{\Gamma} : \Gamma \to \Gamma \otimes H$ such that the differential $d : A \to \Gamma$ is right H-colinear:

$$\Delta_{\Gamma} \circ \mathrm{d} = (\mathrm{d} \otimes \mathsf{id}) \circ \Delta_{A}.$$

Similarly for left *H*-covariant and *H*-bicovariant calculi.

Theorem (Woronowicz)

There is a bijective correspondence

 $\{left/bi-covariant FODCi on H\} \iff \{right ideals \subseteq \ker \epsilon\}.$

The calculus is bicovariant if and only if the corresponding ideal $I \subseteq \ker \epsilon$ is $\operatorname{Ad-invariant}$, where $\operatorname{Ad}(h) = h_2 \otimes S(h_1)h_3$.

1. Differential structures over algebras

2. Hopf-Galois extensions

3. Differential calculi on quantum principal bundles

Definition

Let H be a Hopf algebra and A be a right H-comodule algebra.

Definition

Let H be a Hopf algebra and A be a right H-comodule algebra.

• The subalgebra of coinvariant elements of A under a right H-coaction is defined as

$$B:=\{a\in A: \Delta_A(a)=a\otimes 1\}\subseteq A.$$

Definition

Let H be a Hopf algebra and A be a right H-comodule algebra.

• The subalgebra of coinvariant elements of A under a right H-coaction is defined as

$$B:=\{a\in A: \ \Delta_A(a)=a\otimes 1\}\subseteq A.$$

• We call $B \subseteq A$ a Hopf–Galois extension if the *canonical map*

$$\chi: A \otimes_B A \to A \otimes H$$
, $a \otimes_B a' \mapsto a \Delta_A(a')$

is invertible.

Definition

Let H be a Hopf algebra and A be a right H-comodule algebra.

• The subalgebra of coinvariant elements of A under a right H-coaction is defined as

$$B:=\{a\in A: \Delta_A(a)=a\otimes 1\}\subseteq A.$$

• We call $B \subseteq A$ a Hopf–Galois extension if the canonical map

$$\chi: A \otimes_B A \to A \otimes H$$
, $a \otimes_B a' \mapsto a \Delta_A(a')$

is invertible.

• Given $B \subseteq A$ a Hopf–Galois extension, the inverse of χ is known as the translation map

 $\tau: A \otimes H|_{1 \otimes H} = H \longrightarrow A \otimes_B A.$

Faithfully flat Hopf–Galois extensions

Faithfully flat Hopf–Galois extensions

- The Hopf algebra *H* is the structure group.
- The right *H*-comodule algebra *A* is the total space.
- The subalgebra of coinvariant elements is the base space.

Faithfully flat Hopf–Galois extensions

- The Hopf algebra *H* is the structure group.
- The right *H*-comodule algebra *A* is the total space.
- The subalgebra of coinvariant elements is the base space.

Definition

A quantum principal bundle is a (faithfully flat) Hopf-Galois extension.

1. Differential structures over algebras

2. Hopf–Galois extensions

3. Differential calculi on quantum principal bundles

Let $B = A^{coH} \subseteq A$ be a quantum principal bundle.

Let $B = A^{coH} \subseteq A$ be a quantum principal bundle. We consider differential calculi:

- $\Omega^{\bullet}(A)$ over the right *H*-comodule algebra *A*;
- Γ^{\wedge} , i.e. the maximal prolongation of any bicovariant first order differential calculus over the Hopf algebra *H*.

Let $B = A^{coH} \subseteq A$ be a quantum principal bundle. We consider differential calculi:

- $\Omega^{\bullet}(A)$ over the right *H*-comodule algebra *A*;
- Γ^{\wedge} , i.e. the maximal prolongation of any bicovariant first order differential calculus over the Hopf algebra *H*.

Differential calculi over the right H-comodule algebra A and the Hopf algebra H are the essential ingredients of the following definition.

Let $B = A^{coH} \subseteq A$ be a quantum principal bundle. We consider differential calculi:

- $\Omega^{\bullet}(A)$ over the right *H*-comodule algebra *A*;
- Γ^{\wedge} , i.e. the maximal prolongation of any bicovariant first order differential calculus over the Hopf algebra *H*.

Differential calculi over the right H-comodule algebra A and the Hopf algebra H are the essential ingredients of the following definition.

Definition

 $\Omega^{\bullet}(A)$ is a complete differential calculus if the coaction $\Delta_A \colon A \to A \otimes H$ lifts to a morphism

$$\Delta^{\wedge}_{A} \colon \Omega^{\bullet}(A) \to \Omega^{\bullet}(A) \otimes \Gamma^{\wedge}$$

of differential graded algebras.

Let $B = A^{coH} \subseteq A$ be a quantum principal bundle. We consider differential calculi:

- $\Omega^{\bullet}(A)$ over the right *H*-comodule algebra *A*;
- Γ^{\wedge} , i.e. the maximal prolongation of any bicovariant first order differential calculus over the Hopf algebra *H*.

Differential calculi over the right H-comodule algebra A and the Hopf algebra H are the essential ingredients of the following definition.

Definition

 $\Omega^{\bullet}(A)$ is a complete differential calculus if the coaction $\Delta_A \colon A \to A \otimes H$ lifts to a morphism

$$\Delta^{\wedge}_A \colon \Omega^{\bullet}(A) \to \Omega^{\bullet}(A) \otimes \Gamma^{\wedge}$$

of differential graded algebras.

From now on we always consider complete differential calculi.

• The space (differential calculus) of vertical forms is defined as

 $\operatorname{ver}^1(A) := A \otimes \Lambda$,

where Λ is the space of left coinvariant forms of a given bicovariant FODC on the structure Hopf algebra *H*.

• The space (differential calculus) of vertical forms is defined as

 $\operatorname{ver}^1(A) := A \otimes \Lambda$,

where Λ is the space of left coinvariant forms of a given bicovariant FODC on the structure Hopf algebra *H*.

• Given a first order (complete) calculus, the space of horizontal forms is the right *H*-comodule algebra

 $\mathfrak{hor}^1(A) := (\Delta^1_A)^{-1}(\Omega^1(A) \otimes H).$

• The space (differential calculus) of vertical forms is defined as

 $\mathfrak{ver}^1(A) := A \otimes \Lambda$,

where Λ is the space of left coinvariant forms of a given bicovariant FODC on the structure Hopf algebra *H*.

• Given a first order (complete) calculus, the space of horizontal forms is the right *H*-comodule algebra

$$\mathfrak{hor}^1(A) := (\Delta^1_A)^{-1}(\Omega^1(A) \otimes H).$$

Theorem

Let $B \subseteq A$ be a quantum principal bundle with Hopf algebra H, let Γ be a FODC over H and Λ be the corresponding differential graded subalgebra of coinvariant 1-forms of Γ . Let $\Omega^1(A)$ be a complete FODC over A. There is a short-exact sequence of A-modules given by

$$0 \longrightarrow \mathfrak{hor}^{1}(A) \xrightarrow{\iota} \Omega^{1}(A) \xrightarrow{\pi_{\mathfrak{ver}}} \mathfrak{ver}^{1}(A) \longrightarrow 0$$

• The space (differential calculus) of vertical forms is defined as

 $\mathfrak{ver}^1(A) := A \otimes \Lambda$,

where Λ is the space of left coinvariant forms of a given bicovariant FODC on the structure Hopf algebra *H*.

• Given a first order (complete) calculus, the space of horizontal forms is the right *H*-comodule algebra

$$\mathfrak{hor}^1(A) := (\Delta^1_A)^{-1}(\Omega^1(A) \otimes H).$$

Theorem

Let $B \subseteq A$ be a quantum principal bundle with Hopf algebra H, let Γ be a FODC over H and Λ be the corresponding differential graded subalgebra of coinvariant 1-forms of Γ . Let $\Omega^1(A)$ be a complete FODC over A. There is a short-exact sequence of A-modules given by

$$0 \longrightarrow \mathfrak{hor}^{1}(A) \xrightarrow{\iota} \Omega^{1}(A) \xrightarrow{\pi_{\mathfrak{ver}}} \mathfrak{ver}^{1}(A) \longrightarrow 0$$

• The sequence splits by the choice of a connection, giving the total space as a direct sum of vertical and horizontal subspaces.

• Let $B \subseteq A$ be a QPB.

- Let $B \subseteq A$ be a QPB.
- The bijective map χ : A ⊗_B A → A ⊗ H is in particular an isomorphism of vector spaces.

- Let $B \subseteq A$ be a QPB.
- The bijective map χ : A ⊗_B A → A ⊗ H is in particular an isomorphism of vector spaces.
- We define an associative multiplication on *A* ⊗_{*B*} *A* via the following diagram

- Let $B \subseteq A$ be a QPB.
- The bijective map χ : A ⊗_B A → A ⊗ H is in particular an isomorphism of vector spaces.
- We define an associative multiplication on *A* ⊗_{*B*} *A* via the following diagram

• Multiplication on $A \otimes_B A$ is therefore given as

$$\mu_{A\otimes_B A}((a\otimes_B a')\otimes (b\otimes_B b'))=a\sigma(a'\otimes_B b)b',$$

where the Đurđević braiding $\sigma: A \otimes_B A \to A \otimes_B A$ reads

$$\sigma(a\otimes_B a'):=a_0a'\tau(a_1).$$

• The Hopf–Galois map $\chi : A \otimes_B A \to A \otimes H$ lifts as

$$\chi^{ullet} \colon \Omega^{ullet}(A \otimes_B A) o \Omega^{ullet}(A) \otimes \Omega^{ullet}(H) \ \omega \otimes_{\Omega^{ullet}(B)} \eta \mapsto \omega \Delta^{\wedge}_A(\eta) = \omega \wedge \eta_{[0]} \otimes \eta_{[1]}.$$

- The Hopf–Galois map $\chi : A \otimes_B A \to A \otimes H$ lifts as $\chi^{\bullet} : \Omega^{\bullet}(A \otimes_B A) \to \Omega^{\bullet}(A) \otimes \Omega^{\bullet}(H)$ $\omega \otimes_{\Omega^{\bullet}(B)} \eta \mapsto \omega \Delta^{A}_{A}(\eta) = \omega \wedge \eta_{[0]} \otimes \eta_{[1]}.$
- We define the space of coinvariant differential forms as

$$\Omega^{\bullet}(B) := \{ \omega \in \Omega^{\bullet}(A) \mid \Delta^{\wedge}_{A}(\omega) = \omega \otimes 1_{H} \}.$$

• The Hopf–Galois map
$$\chi : A \otimes_B A \to A \otimes H$$
 lifts as
 $\chi^{\bullet} : \Omega^{\bullet}(A \otimes_B A) \to \Omega^{\bullet}(A) \otimes \Omega^{\bullet}(H)$
 $\omega \otimes_{\Omega^{\bullet}(B)} \eta \mapsto \omega \Delta^{A}_{A}(\eta) = \omega \wedge \eta_{[0]} \otimes \eta_{[1]}.$

• We define the space of coinvariant differential forms as

$$\Omega^{\bullet}(B) := \{ \omega \in \Omega^{\bullet}(A) \mid \Delta^{\wedge}_{A}(\omega) = \omega \otimes 1_{H} \}.$$

Theorem (DDA-Latini-Weber '24)

Let $\Omega^{\bullet}(A)$ be a complete calculus on QPB $B = A^{\operatorname{coH}} \subseteq A$. We have a graded Hopf–Galois extension.

$$\Omega^{\bullet}(B) = \Omega^{\bullet}(A)^{co(\Gamma^{\wedge})} \subseteq \Omega^{\bullet}(A)$$

- The Hopf–Galois map $\chi : A \otimes_B A \to A \otimes H$ lifts as $\chi^{\bullet} : \Omega^{\bullet}(A \otimes_B A) \to \Omega^{\bullet}(A) \otimes \Omega^{\bullet}(H)$ $\omega \otimes_{\Omega^{\bullet}(B)} \eta \mapsto \omega \Delta^{A}_{A}(\eta) = \omega \wedge \eta_{[0]} \otimes \eta_{[1]}.$
- We define the space of coinvariant differential forms as

$$\Omega^{\bullet}(B) := \{ \omega \in \Omega^{\bullet}(A) \mid \Delta^{\wedge}_{A}(\omega) = \omega \otimes 1_{H} \}.$$

Theorem (DDA-Latini-Weber '24)

Let $\Omega^{\bullet}(A)$ be a complete calculus on QPB $B = A^{\operatorname{coH}} \subseteq A$. We have a graded Hopf–Galois extension.

$$\Omega^{\bullet}(B) = \Omega^{\bullet}(A)^{co(\Gamma^{\wedge})} \subseteq \Omega^{\bullet}(A)$$

• The braiding extends to differential forms via

$$\sigma: \Omega^{\bullet}(A) \otimes_{B} \Omega^{\bullet}(A) \to \Omega^{\bullet}(A) \otimes_{B} \Omega^{\bullet}(A)$$
$$\omega \otimes_{\Omega^{\bullet}(B)} \eta \mapsto (-1)^{|\omega_{[1]}||\eta|} \omega_{[0]} \wedge \eta \wedge \tau^{\bullet}(\omega_{[1]})$$

• Consider the Hopf algebra $H := \mathcal{O}(U(1)) = \mathbb{C}[t, t^{-1}],$

- Consider the Hopf algebra $H := \mathcal{O}(U(1)) = \mathbb{C}[t, t^{-1}],$
- Consider A := O_q(SU(2)), i.e. the free algebra generated by four elements α, β, γ, δ modulo relations

$$eta lpha = q lpha eta, \quad \gamma lpha = q lpha \gamma, \quad \delta eta = q eta \delta, \quad \delta \gamma = q \gamma \delta$$

 $\gamma eta = eta \gamma, \quad \delta lpha - lpha \delta = (q - q^{-1}) eta \gamma, \quad lpha \delta - q^{-1} eta \gamma = 1.$

- Consider the Hopf algebra $H := \mathcal{O}(U(1)) = \mathbb{C}[t, t^{-1}],$
- Consider A := O_q(SU(2)), i.e. the free algebra generated by four elements α, β, γ, δ modulo relations

$$eta lpha = q lpha eta, \quad \gamma lpha = q lpha \gamma, \quad \delta eta = q eta \delta, \quad \delta \gamma = q \gamma \delta$$

 $\gamma eta = eta \gamma, \quad \delta lpha - lpha \delta = (q - q^{-1}) eta \gamma, \quad lpha \delta - q^{-1} eta \gamma = 1.$

• $A = O_q(SU(2))$ is a right *H*-comodule algebra under the right *H*-coaction

$$\begin{array}{c} \Delta_{A} : A \to A \otimes H, \\ \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \mapsto \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \otimes \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix} = \begin{pmatrix} \alpha \otimes t & \beta \otimes t^{-1} \\ \gamma \otimes t & \delta \otimes t^{-1} \end{pmatrix}.$$

- Consider the Hopf algebra $H := \mathcal{O}(U(1)) = \mathbb{C}[t, t^{-1}],$
- Consider $A := O_q(SU(2))$, i.e. the free algebra generated by four elements $\alpha, \beta, \gamma, \delta$ modulo relations

$$eta lpha = q lpha eta, \quad \gamma lpha = q lpha \gamma, \quad \delta eta = q eta \delta, \quad \delta \gamma = q \gamma \delta$$

 $\gamma eta = eta \gamma, \quad \delta lpha - lpha \delta = (q - q^{-1}) eta \gamma, \quad lpha \delta - q^{-1} eta \gamma = 1.$

• $A = O_q(SU(2))$ is a right *H*-comodule algebra under the right *H*-coaction

$$\begin{array}{c} \Delta_{A} : A \to A \otimes H, \\ \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \mapsto \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \otimes \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix} = \begin{pmatrix} \alpha \otimes t & \beta \otimes t^{-1} \\ \gamma \otimes t & \delta \otimes t^{-1} \end{pmatrix}.$$

• The subalgebra B of coinvariant elements is the Podleś sphere $\mathcal{O}_q(\mathbb{S}^2)$.

- Consider the Hopf algebra $H := \mathcal{O}(U(1)) = \mathbb{C}[t, t^{-1}],$
- Consider $A := O_q(SU(2))$, i.e. the free algebra generated by four elements $\alpha, \beta, \gamma, \delta$ modulo relations

$$eta lpha = q lpha eta, \quad \gamma lpha = q lpha \gamma, \quad \delta eta = q eta \delta, \quad \delta \gamma = q \gamma \delta$$

 $\gamma eta = eta \gamma, \quad \delta lpha - lpha \delta = (q - q^{-1}) eta \gamma, \quad lpha \delta - q^{-1} eta \gamma = 1.$

• $A = O_q(SU(2))$ is a right *H*-comodule algebra under the right *H*-coaction

$$\begin{array}{c} \Delta_{A} : A \to A \otimes H, \\ \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \mapsto \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \otimes \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix} = \begin{pmatrix} \alpha \otimes t & \beta \otimes t^{-1} \\ \gamma \otimes t & \delta \otimes t^{-1} \end{pmatrix}.$$

• The subalgebra *B* of coinvariant elements is the Podleś sphere $\mathcal{O}_q(\mathbb{S}^2)$. The quantum Hopf fibration provided by the above data is a faithfully flat Hopf-Galois extension, i.e. $B \subseteq A$ is a QPB.

Define

$$\Omega^{\bullet}(A) = A \oplus \underbrace{\Omega^{1}(A)}_{\operatorname{span}_{A}\{e^{\pm}, e^{0}\}} \oplus \underbrace{\Omega^{2}(A)}_{\operatorname{span}_{A}\{e^{\pm} \wedge e^{0}, e^{+} \wedge e^{-}\}} \oplus \underbrace{\Omega^{3}(A)}_{\operatorname{span}_{A}\{e^{\pm} \wedge e^{-} \wedge e^{0}\}},$$
$$\Omega^{\bullet}(H) = H \oplus \Omega^{1}(H), \quad \text{with} \quad \mathrm{d}t \cdot t = q^{2}t \cdot \mathrm{d}t.$$

Define

$$\Omega^{\bullet}(A) = A \oplus \underbrace{\Omega^{1}(A)}_{\operatorname{span}_{A}\{e^{\pm}, e^{0}\}} \oplus \underbrace{\Omega^{2}(A)}_{\operatorname{span}_{A}\{e^{\pm} \wedge e^{0}, e^{+} \wedge e^{-}\}} \oplus \underbrace{\Omega^{3}(A)}_{\operatorname{span}_{A}\{e^{\pm} \wedge e^{-} \wedge e^{0}\}},$$
$$\Omega^{\bullet}(H) = H \oplus \Omega^{1}(H), \quad \text{with} \quad \mathrm{d}t \cdot t = q^{2}t \cdot \mathrm{d}t.$$

Theorem (DDA-Latini-Weber '24)

The differential calculus Ω[•](A) = A ⊕ Ω¹(A) ⊕ Ω²(A) ⊕ Ω³(A) is complete.

Define

$$\Omega^{\bullet}(A) = A \oplus \underbrace{\Omega^{1}(A)}_{\operatorname{span}_{A}\{e^{\pm}, e^{0}\}} \oplus \underbrace{\Omega^{2}(A)}_{\operatorname{span}_{A}\{e^{\pm} \wedge e^{0}, e^{+} \wedge e^{-}\}} \oplus \underbrace{\Omega^{3}(A)}_{\operatorname{span}_{A}\{e^{+} \wedge e^{-} \wedge e^{0}\}},$$
$$\Omega^{\bullet}(H) = H \oplus \Omega^{1}(H), \quad \text{with} \quad \mathrm{d}t \cdot t = q^{2}t \cdot \mathrm{d}t.$$

Theorem (DDA-Latini-Weber '24)

- The differential calculus Ω[•](A) = A ⊕ Ω¹(A) ⊕ Ω²(A) ⊕ Ω³(A) is complete.
- The induced (sub)space of forms on the Podleś sphere is a differential calculus (the pullback calculus).

Define

$$\Omega^{\bullet}(A) = A \oplus \underbrace{\Omega^{1}(A)}_{\operatorname{span}_{A}\{e^{\pm}, e^{0}\}} \oplus \underbrace{\Omega^{2}(A)}_{\operatorname{span}_{A}\{e^{\pm} \wedge e^{0}, e^{+} \wedge e^{-}\}} \oplus \underbrace{\Omega^{3}(A)}_{\operatorname{span}_{A}\{e^{+} \wedge e^{-} \wedge e^{0}\}},$$
$$\Omega^{\bullet}(H) = H \oplus \Omega^{1}(H), \quad \text{with} \quad \mathrm{d}t \cdot t = q^{2}t \cdot \mathrm{d}t.$$

Theorem (DDA-Latini-Weber '24)

- The differential calculus Ω[•](A) = A ⊕ Ω¹(A) ⊕ Ω²(A) ⊕ Ω³(A) is complete.
- The induced (sub)space of forms on the Podleś sphere is a differential calculus (the pullback calculus).
- The braiding σ : Ω[•](A) ⊗_B Ω[•](A) → Ω[•](A) ⊗_B Ω[•](A) is symmetric only on A ⊗_B A.

References

Thank you for your attention!