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Homogeneous spaces

Let (M,F ) be a Finsler manifold,
G ⊂ I0(M) be a transitive group of isometries
- homogeneous Finsler manifold

Let p ∈ M be a fixed point, H be the isotropy group at p
- homogeneous space (G/H,F )

Let (G/H,F ) be fixed homogeneous space,
g, h the Lie algebras of G ,H,
m a vector space such that g = h+m and Ad(H)m ⊂ m
- reductive decomposition

Let g = h+m be a fixed reductive decomposition
- the natural identification of m⊂ g and TpM

(via the natural projection π : G → G/H)
- Ad(H)-invariant Minkowski norm F on m



αi -type metrics

Definition

Let (G/H,F ) be a homogeneous Finsler space with a reductive
decomposition g = m+ h. Consider the adjoint action of H on m,
which leads to the irreducible decomposition m = ⊕s

i=1mi .
Choose symmetric positively definite Ad(H)-invariant bilinear
forms αi on mi , i = 1 . . . s and let yi be the corresponding
projections of a vector y ∈ m onto mi .
The Minkowski norm F on m and the corresponding homogeneous
Finsler metric on G/H is of the αi -type if there exist a smooth
function f : [0,∞)s → R such that

F (y) = f (α1(y1), . . . , αs(ys)), y ∈ m.

▶ (α1, α2)-metrics,

▶ f-product



Another construction of new Finsler metrics

M.A. Javaloyes and M. Sánchez considered metrics of the type

F (y) =
√

L(F1(y), . . . ,Fk(y), β1(y), . . . , βl(y)),

where Fi are Finsler metrics and βj are one-forms on M.
The continuous function L must satisfy:
(i) be smooth and positive away from 0,
(ii) be positively homogeneous of degree 2,
(iii) L,i ≥ 0, for i = 1, . . . , k ,
(iv) Hess(L) be positive semi-definite,
(v) L,1 + · · ·+ L,k > 0.
There are many functions which satisfy these conditions,
for example, one can choose L =

√
g1 + · · ·+√

gk .



New Finsler g.o. metrics

We consider homogeneous Finsler metrics of the type

F (y) =

√
L(
√
g1(y), . . . ,

√
gk(y)).

We focus on the natural family of positively related
initial Riemannian g.o. metrics.
It can be observed that these metrics are particular examples
of the αi -type metrics.
We study the g.o. property of the metric F .



Homogeneous geodesics

Definition

A geodesic γ in (G/H,F ) is homogeneous
if there is a vector X ∈ g such that γ(t) = exp(tX )(p).
The vector X is called geodesic vector.

Definition

A homogeneous space (G/H,F ) is called a Finsler g.o. space,
if each geodesic of (G/H,F ) is homogeneous.

Definition

Let (G/H,F ) be a g.o. space and g = m+ h
an Ad(H)-invariant decomposition of the Lie algebra g.
A geodesic graph is an Ad(H)-equivariant map ξ : m → h
such that X + ξ(X ) is a geodesic vector for each o ̸= X ∈ m.



Positively related homogeneous metrics

Definition

Let G/H be a homogeneous space
with a reductive decomposition g = m+ h. Consider the
Ad(H)-invariant irreducible decomposition m = ⊕s

i=1mi

and let αi be Ad(H)-invariant scalar products on the respective
spaces mi . We consider the family of scalar products

g(c1, . . . , cs) =
s∑

i=1

ci · αi ,

for any numbers 0 < ci ∈ R.
This family of scalar products on m and corresponding family
of Riemannian metrics on G/H will be called
scalar products positively related and metrics positively related.

▶ The new construction of Finsler metrics F above using
positively related metrics gives particular αi -type metrics.



Positively related g.o. metrics

Conjecture

Consider a family of positively related Riemannian metrics.
If one metric of this family is a g.o. metric,
then all metrics from this family are also g.o. metrics.



Geodesic lemma

Lemma (D. Latifi)

Let (G/H,F ) be a homogeneous Finsler space,
g = m+ h be a reductive decomposition

and g the fundamental tensor on m (gy (u, v) =
1
2
∂2F 2(y+su+tv)

∂s∂t ).
The vector Y ∈ g is geodesic if and only if it holds

gYm(Ym, [Y ,U]m) = 0, ∀U ∈ m.



Fundamental tensor of F

Lemma

Let g1, . . . , gk be homogeneous Riemannian metrics on G/H
and let g = m+ h be a reductive decomposition.
Let F =

√
L(
√
g1, . . . ,

√
gk) on m,

which gives a homogeneous Finsler metric on G/H.
For arbitrary vectors y , v ∈ m, the fundamental tensor g of F
satisfies the formula

gy (y , v) =
k∑

j=1

Bj(y) · gj(y , v),

where the functions Bj(y) are given by

Bj(y) =
L,j

2
√
gj(y , y)

=
L,j

2Fj(y)
, j = 1 . . . k .



Fundamental tensor of F for positively related initial
metrics

Let g = m+ h be a reductive decomposition
with the Ad(H)-invariant irreducible decomposition m = ⊕s

i=1mi .
Scalar products gj have corresponding decompositions

gj =
s∑

i=1

aji · αi , j = 1 . . . k,

where 0 < aji ∈ R and αi are some initial Ad(H)-invariant scalar
products on mi .

gy (y , v) =
k∑

j=1

Bj(y) · gj(y , v)

=
k∑

j=1

Bj(y) ·
s∑

i=1

aji · αi (y , v) =
s∑

i=1

Ci (y) · αi (y , v).



Geodesic lemma

Lemma

Let G/H be a homogeneous space with a reductive decomposition
g = m+ h and the Ad(H)-irreducible decomposition m = ⊕s

i=1mi .
Let gj be positively related Riemannian metrics
and let F =

√
L(
√
g1,

√
g2, . . . ,

√
gk).

The vector y + ξ(y), where y ∈ m and ξ(y) ∈ h,
is a geodesic vector for the Finsler metric F if and only if

s∑
i=1

Ci (y) · αi

(
y , [y + ξ(y),U]m

)
= 0, ∀U ∈ m.



Main theorem

Theorem

Let G/H be a homogeneous space with a reductive decomposition
g = h+m and the Ad(H)-irreducible decomposition m = ⊕s

i=1mi .
Let gj , j = 1 . . . k , be from a family of positively related
Riemannian metrics on G/H, all of which are g.o. metrics.
Then any homogeneous Finsler metric of the type
F =

√
L(
√
g1,

√
g2, . . . ,

√
gk) on G/H is also a g.o. metric.

Proof. Consider geodesic lemma and an arbitrary fixed vector
y ∈ m. The values Ci (y) are positive real numbers
and the Riemannian metric

C1(y) · α1 + · · ·+ Cs(y) · αs

belongs to the family of initial positively related g.o. metrics.
Hence there exist a vector ξ(y) which satisfies geodesic lemma.
Because y ∈ m was arbitrary, the metric F is also a g.o. metric. □



Example S7 = Sp(2) · U(1)/Sp(1) · diag(U(1))

h = sp(1) :


ih1 −h2 − ih3 0 0

h2 − ih3 −ih1 0 0
0 0 0 0
0 0 0 0

 .

For sp(2) = sp(1) +m,

m :


0 0 x1 + ix2 −x3 − ix4
0 0 x3 − ix4 x1 − ix2

− x1 + ix2 −x3 − ix4 iz1 −z2 − iz3
x3 − ix4 −x1 − ix2 z2 − iz3 −iz1

 .

We extend h by one more operator.



Example

y = x1X1 + · · ·+ x4X4 + z1Z1 + z2Z2 + z3Z3,
ξ(y) = ξ1(y)H1 + ξ2(y)H2 + ξ3(y)H3 + ξ4(y)W .



x2 x3 x4 −x2 (1− 2C2

C1
)z1x2 + (1− 2C3

C1
)(z2x3 + z3x4)

−x1 −x4 x3 x1 −(1− 2C2

C1
)z1x1 + (1− 2C3

C1
)(z2x4 − z3x3)

x4 −x1 −x2 x4 −(1− 2C2

C1
)z1x4 + (1− 2C3

C1
)(−z2x1 + z3x2)

−x3 x2 −x1 −x3 (1− 2C2

C1
)z1x3 − (1− 2C3

C1
)(z2x2 + z3x1)

0 0 0 2z3 2z1z3(
C2

C3
− 1)

0 0 0 −2z2 2z1z2(1− C2

C3
)


.



Example

K1 = K1(y) =
C2

C3
− 2

C2

C1
, K2 = K2(y) = 1− 2

C3

C1
, K3 = K3(y) =

C2

C3
− 1.

ξ1 =
K1z1(x

2
1 + x22 − x23 − x24 ) + 2K2

[
z2(x2x3 − x1x4) + z3(x1x3 + x2x4)

]
x21 + x22 + x23 + x24

,

ξ2 =
2K1z1(x2x3 + x1x4) + K2

[
z2(x

2
1 − x22 + x23 − x24 ) + 2z3(x3x4 − x1x2)

]
x21 + x22 + x23 + x24

,

ξ3 =
2K1z1(x2x4 − x1x3) + K2

[
2z2(x1x2 + x3x4) + z3(x

2
1 − x22 − x23 + x24 )

]
x21 + x22 + x23 + x24

,

ξ4 = K3z1.

We observe that, if we put Ci (y) = ci > 0,
we obtain formulas for the geodesic graph
of the Riemannian metric g(c1, c2, c3) =

∑3
i=1 ciαi .
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