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Let (M, c = [g ]) be a conformal pseudo-Riemannian manifold.

A diffeomorphism
F : M → M

is called a conformal transformation if

∀g ∈ c F ∗g ∈ c,

i.e.,
F ∗g = e2f g .

F is called non-essential if

∃h ∈ c F ∗h = h.

Otherwise F is essential.
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G ⊂ Conf(M, c) is called non-essential if

∃h ∈ c G ⊂ Isom(M, h)

Otherwise G is essential.
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Any Riemannian manifold which admits an essential group of
conformal transformations is conformally equivalent to the
standard sphere or the Euclidean space (the Lichnerowicz
conjecture): Alekseevsky (1972), Obata (1971), Ferrand (1996).

There are many examples of Lorentzian manifolds with essential
conformal group: Frances, Melnik, Zeghib,...

Examples of essential conformally homogeneous Lorentzian
manifolds: Podoksenov (1992).

Description of Lorentzian manifolds with essential group of
homotheties: Alekseevsky (1985)
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Recent related works:

J. Holland, G. Sparling, Sachs equations and plane waves II:
Isometries and conformal isometries. arXiv:2405.12748

H. Zhang, Z. Chen, On Lie groups with conformal vector fields
induced by derivations. Transformation Groups (2024)
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We study simply connected essential conformally homogeneous
conformal Lorentzian manifolds (M = G/H, c).

Two types of such manifolds:

A. Manifolds with non-faithful isotropy representation

j : h→ co(V ), V = g/h = ToM

of the stability subalgebra h.

B. Manifolds with faithful isotropy representation j .

Alekseevsky (2017): classification of spaces of type A.

Manifolds of type A are conformally flat.
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A Lorentzian manifold (M, g) is called a plane wave if there exists
a vector field p with

g(p, p) = 0, ∇p = 0,

R(X ,Y ) = 0, ∇XR = 0 ∀ X ,Y orthogonal to p. (1)

The metric g of a plane wave may be written locally in the form

g = 2dvdu +
n∑

i=1

(dx i )2 + aij(u)x ix j(du)2 (2)

where aij(u) is a symmetric matrix of functions. The metric (2) is
conformally flat if and only if

aij(u) = δijb(u),

where b(u) is a function.
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Classification of locally homogeneous plane waves: Blau,
O’Loughlin (2003)

Classification of simply connected homogeneous plane waves:
Hanounah, Mehidi, Zeghib (2023):

(a) the space Rn+2 = R× Rn × R with the metric

g = 2dvdu +
n∑

i=1

(dx i )2 +
(
euFBe−uF

)
ij
x ix j(du)2,

(b) the space R× Rn × R>0 with the metric

g = 2dvdu +
n∑

i=1

(dx i )2 +
(
e ln(u)FBe− ln(u)F

)
ij
x ix j

(du)2

u2
.

Here B and F are respectively symmetric and skew-symmetric
matrices. The metrics of type (a) are geodesically complete, while
the metrics of type (b) are not geodesically complete.
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Each homogeneous plane wave of type (b) is globally conformally
diffeomorphic to a homogeneous plane wave of type (a): Holland,
Sparling (2024)

Indeed, the coordinates transformation

v 7→ v − 1

4

n∑
i=1

(x i )2, x i 7→ e
u
2 x i , u 7→ eu,

transforms the metric (b) into the metric of the form (a) given by :

g = eu

(
2dvdu +

n∑
i=1

(dx i )2 +

(
euF

(
B − 1

4
id

)
e−uF

)
ij

x ix j(du)2

)
.
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Plane wave metric:

g = 2dvdu +
n∑

i=1

(dx i )2 + aij(u)x ix j(du)2.

A homothety transformation of g :

(v , x i , u) 7→ (λ2v , λx i , u), (3)

g 7→ λ2g
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Theorem 1
Let (M, c) be a simply connected non-conformally flat conformal
Lorentzian manifold. Suppose that (M, c) admits an essential
transitive group of conformal transformations. Then there exists a
metric g ∈ c such that (M, g) is a complete homogeneous plane
wave.
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Theorem 2
Let (M, g) be a simply connected non-conformally flat
homogeneous plane wave. Then the group of conformal
transformations of (M, g) consists of homotheties and is a
1-dimensional extension of the group of isometries.
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Notation

Minkowski space: V = R1,n+1

Witt basis: p, e1, . . . , en, q, (p, q) = 1, (p, p) = (q, q) = 0
E = Rn = span{e1, . . . , en}

∧2V ∼= so(V ) = so(1, n + 1) :

(X ∧ Y )Z = (X ,Z )Y − (Y ,Z )X , ∀X ,Y ,Z ∈ V

so(V ) = (Rp ∧ q + so(E )) + p ∧ E + q ∧ E
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Isometry Lie algebra of a homogeneous plane wave

isom(M, g) = isom(M, g)o + V ,

isom(M, g)o = k + p ∧ E ⊂ so(V ),

[q, p] = λp, [p,X ] = 0, [X ,Y ] = 0,

[q, p ∧ X ] = p ∧ (λ idE +F )X − X ,

[q,X ] = p ∧ BX + FX ,

for all X ,Y ∈ E .

Here λ = 0 for the spaces of type (a), and λ = 1 for the spaces of
type (b).

k ⊂ so(E ) the subalgebra commuting with B and F .
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Conformal Lie algebra of a homogeneous plane wave

Holland, Sparling (2024):

conf(M, g) = RD + isom(M, g), D = idV −p ∧ q
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Proof of the Main Theorem

Lemma 1
Let (M = G/H, c) be a connected homogeneous conformal
manifold. Suppose that a Lie subgroup G̃ ⊂ G has the open orbit
U = G̃o = G̃/H̃. If the isotropy group j(H̃) is a subgroup of the
orthogonal Lie group O(ToU), then the group G̃ preserves the
metric g |U which is the restriction to U of some metric g ∈ c from
the conformal class c .

Lemma 2
Let M = G/H be a connected homogeneous manifold. If a normal
subgroup F ⊂ G has an open orbit U = Fo, then F acts on M
transitively.
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Lemma 3
Let (M = G/H, c) be a homogeneous conformal Lorentzian
manifold. Suppose that F ⊂ G is a normal Lie subgroup of G
acting transitively on M by isometries of a metric g ∈ c . Then G
acts by homothetic transformations of g .

Anton Galaev Conformally homogeneous Lorentzian spaces



Let (M = G/H, c) be a simply connected essential conformally
homogeneous manifold with faithful isotropy representation

j : H → CO(V ), V = R1,n+1 = ToM = g/h

h ∼= j(h) ⊂ co(V ) = R idV ⊕so(V )

h 6⊂ so(V )

h̃ := h ∩ so(V )
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Step 1. Prove that h contains an element

D = idV −p ∧ q + C0, C0 ∈ so(n)

with respect to some Witt basis p, e1, . . . , en, q.

Lemma 4
If idV ∈ h, then (M, c) is conformally flat.

Hence,
D = idV +C ∈ h, C ∈ so(V ), C 6= 0
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Canonical forms of the elements C ∈ so(V ):

Elliptic. C annihilates a time-like vector e− ∈ V ,

C = C0 ∈ so(En+1) ⊂ so(V ), En+1 = e⊥− .

Hyperbolic. ∃ Witt basis p, e1, . . . , en, q of V ,

C = αp ∧ q + C0, α ∈ R, α 6= 0,

C0 ∈ so(E ), E = span{e1, . . . , en}.

Parabolic. ∃ Witt basis p, e1, . . . , en, q of V ,

C = αp ∧ e1 + C0, α ∈ R, α 6= 0,

C0 ∈ so(En−1), En−1 = span{e2, . . . en}.
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Demonstration in some cases

Suppose that D = idV +C ∈ h, where C = αp ∧ q + C0 is
hyperbolic. It holds

[D, p] = (1− α)p, [D, q] = (1 + α)q, [D,E ] ⊂ E ,

and the eigenvalues of D acting on E belong to the set 1 + Ri .
The eigenvalues of D acting on co(V ) belong to the set
(±α + Ri) ∪ Ri .

This implies that if α 6∈
{
±1

2 ,±1,±2
}

, then [V ,V ] = 0, and
(M, c) is conformally flat.
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Case α = −2

Analyzing the eigenvalues of D, we see that

[h,V ] ⊂ V , [V ,V ] ⊂ h.

This means that
g = h + V

is a symmetric decomposition. This implies that (M, c) admits a
locally symmetric Weyl connection with the holonomy algebra
[V ,V ] ⊂ co(V ).

Dikarev, Galaev, Schneider. Recurrent Lorentzian Weyl spaces. J.
Geom. Anal. 2024:

any locally symmetric Weyl connection is closed, i.e., its holonomy
algebra is contained in so(V ). This means that

[V ,V ] ⊂ h̃ ⊂ so(V )
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Step 2. There exists an open neighbourhood U ⊂ M of the point
o and a metric g ∈ c such that (U, g |U) is a plane wave with the
transitive action of the isometry group of the metric g |U .
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D = idV +C ∈ h, C = −p ∧ q + C0 ∈ h, C0 ∈ so(E )

Recall that

h̃ ⊂ so(V ), so(V ) = (Rp ∧ q + so(E )) + p ∧ E + q ∧ E .

Using D ∈ h we conclude that

h̃ =
(
h̃ ∩ so(E )

)
+ (h̃ ∩ p ∧ E ) + (h̃ ∩ q ∧ E ). (4)
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Let
p ∧ E1 = h̃ ∩ p ∧ E .

It holds
[p ∧ E1,V ] ⊂ p ∧ E1 + V .

We conclude that

f̂ = RD + p ∧ E1 + V ⊂ g

is a subalgebra. The orbit of o for F̂ ⊂ G is an open set U. The
subspace

f = p ∧ E1 + V ⊂ f̂

is an ideal and it contains V . By Lemma 1, there exists a metric
gU on U such that F is a transitive group of isometries of (U, gU).
By Lemma 3, F̂ consists of homothetic transformations of gU .

Lemma 5
The homogeneous Lorentzian manifold (U = F/Fo , gU) is a
homogeneous plane wave.
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Step 3. The global result.

We obtain the inclusion

g ↪→ conf(U, gU) = RD + k + p ∧ E + V .

Consequently
h̃ ⊂ k + p ∧ E .

We conclude that

h = RD +
(
h̃ ∩ so(E )

)
+ (h̃ ∩ p ∧ E ).

This implies that

f = p ∧ E1 + V = (h̃ ∩ p ∧ E ) + V ⊂ g

is an ideal, and the subgroup F ⊂ G is normal. By Lemma 2,
U = M and g = gU is a metric on M from the conformal class c .
Thus, (M, g) is a homogeneous plane wave.
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