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First exotic phenomena

By exotic phenomena, we understand differentiable objects which are
equivalent from a topological point of view, but aren’t from a
differentiable one.

Example
We say that a pair of smooth manifolds 𝑀, 𝑁 is exotic if they are
homeomorphic, but not diffeomorphic.

The first discovery of exotic phenomena is due to Milnor. He proved:

Theorem (Milnor, 1956)
There exist exotic 7-spheres, i.e. smooth 7-manifolds which are
homeomorphic but not diffeomorphic to 𝑆7.
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First exotic phenomena

Later on, Milnor and Kervaire were able to compute the exact number
of exotic spheres in many dimensions:

𝑛 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#𝐾𝑛 1 1 1 ? 1 1 28 2 8 6 992 1 3 2 16256

Here: 𝐾𝑛 = {smooth structures on 𝑆𝑛}/diffeomorphism.

What about 4-manifolds?
Whether there are exotic 4-spheres is an open problem (smooth
Poincaré conjecture in dimension 4).
There are uncountably many exotic ℝ4.
Many other examples of exotic 4-manifolds are known.
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Another example of exotic phenomenon

Definition
A knot is the isotopy class of a smooth embedding 𝑆1 ↪ 𝑆3.

Definition
A knot is said to be slice if it bounds an embedded disk in 𝐵4 = 𝜕𝑆3.

It is called topologically slice if the disk is locally flat.
It is called smoothy slice if the disk is smoothly embedded.

The Conway knot is topologically slice, but not smoothly slice.
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Goal of the talk

In this talk, we will study the following exotic phenomenon.

Definition
Two smooth proper embeddings Σ2 ↪ 𝑊 4 are said to be exotically
knotted if they are isotopic through ambient homeomorphisms, but not
through ambient diffeomorphisms.

Theorem (Hayden, 2021)
There is a pair of exotically knotted disks in 𝐵4 relative boundary.
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Goal of the talk

In fact:

Theorem A
Let 𝑛 ∈ ℕ. Any compact, connected surface with boundary admits a
2𝑛-tuple of smooth, proper embeddings in 𝐵4 that are pairwise
exotically knotted relative boundary.

Theorem B
Let 𝑔 ≥ 0, ℎ ≥ 1 ∈ ℕ. The compact, connected, orientable surface with
boundary with-ℎ-holes and genus 𝑔 admits a (𝑔 + 1)ℎ-tuple of smooth,
proper embeddings in 𝐵4 that are pairwise exotically knotted.
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Handlebody decompositions

Let 0 ≤ 𝑘 ≤ 𝑛. The 𝑛-dimensional 𝑘-handle is ℎ𝑘 = 𝐷𝑘 × 𝐷𝑛−𝑘.

Definition
Let 𝑀 be an 𝑛-manifold with boundary. Attaching a 𝑘-handle to 𝑀
along an embedding 𝜑 ∶ 𝑆𝑘−1 × 𝐷𝑛−𝑘 ↪ 𝜕𝑀 consists of gluing ℎ𝑘 to 𝑀
along 𝜑 to obtain the resulting manifold 𝑀 ∪𝜑 ℎ𝑘.

Definition
A handlebody decomposition of 𝑀 is a sequence of handle attachments
so that the final manifold is diffeomorphic to 𝑀 .

Example
The torus 𝑆1 × 𝑆1 admits a handlebody decomposition consisting of
one 0-handle, two 1-handles and one 2-handle.
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Kirby diagrams
We seek a convenient way to describe handlebodies in dimension 4.

Start with a single 0-handle 𝐷4.
Up to isotopy, there is a unique embedding 𝑆0 × 𝐷3 ↪ 𝜕𝐷4 = 𝑆3.
So there is a unique way to attach 1-handles.

Figure 1: Kirby diagrams for 𝑆1 × 𝐷3 (up) and
(𝑆1 × 𝐷3)#(𝑆1 × 𝐷3) (down).



Kirby diagrams

A 2-handle attachment is described by 𝜑 ∶ 𝑆1 × 𝐷2 ↪ 𝜕𝑀 . This is
determined by

▶ a knot 𝑆1 × {0} ↪ 𝜕𝑀 , and
▶ a framing of its normal bundle, i.e. an integer.

0

−4

Figure 2: Kirby diagram for 𝑆2 × 𝐷2 (left) and
another more complicated Kirby diagram.



Topological invariants from Kirby diagrams

The fundamental group 𝜋1𝑀 :
0

𝑥

𝑦

𝜋1𝑀 ≅ ⟨𝑥, 𝑦|𝑥𝑦−1𝑦𝑥−1𝑦⟩ ≅ ⟨𝑥, 𝑦|𝑦 = 1⟩ ≅ ℤ.



Topological invariants from Kirby diagrams
The intersection form 𝑄𝑀 ∶ 𝐻2(𝑀) × 𝐻2(𝑀) → ℤ:

−4

−2

𝑄𝑀 is represented by the matrix:

[−2 1
1 −4]



Kirby calculus
Kirby calculus ≡ rules for manipulating Kirby diagrams.

−2

−8

−4 −2

−2

−4

−2

−4

−2

−4

(a) (b)

(c) (d)
Figure 3: Equivalent Kirby diagrams
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The disks 𝐷, 𝐷′

Figure 4: The disk 𝐷.



The disks 𝐷, 𝐷′

Figure 5: The disks 𝐷 and 𝐷′.



𝐷 and 𝐷′ are topologically isototopic relative boundary
We use:

Theorem (Conway-Powell, 2021)
If 𝜋1(𝐵4 −𝐷) ≅ 𝜋1(𝐵4 −𝐷′) ≅ ℤ, then 𝐷 and 𝐷′ are topologically
isotopic relative boundary.

0 0

∼
𝑥

𝑦

Figure 6: The complement 𝐵4 −𝜈𝐷.

𝜋1(𝐵4 −𝜈𝐷) ≅ ⟨𝑥, 𝑦|𝑥𝑦−1𝑦𝑥−1𝑦⟩ ≅ ⟨𝑥, 𝑦|𝑦 = 1⟩ ≅ ℤ



𝐷 and 𝐷′ are not smoothly isotopic relative boundary
Suppose they are smoothly isotopic relative boundary. Then, so are the
annuli

Figure 7: The annuli 𝐴 (left) and 𝐴′ (right).

Fact: for 𝐹 2 a connected compact surface in 𝐵4, the double branched
cover Σ2(𝐵4, 𝐹 2) is unique up to diffeomorphism.
To reach a contradiction, it is enough to prove that Σ2(𝐵4, 𝐴) and
Σ2(𝐵4, 𝐴′) are not diffeomorphic!



𝐷 and 𝐷′ are not smoothly isotopic relative boundary
Suppose they are smoothly isotopic relative boundary. Then, so are the
annuli

Figure 7: The annuli 𝐴 (left) and 𝐴′ (right).

Fact: for 𝐹 2 a connected compact surface in 𝐵4, the double branched
cover Σ2(𝐵4, 𝐹 2) is unique up to diffeomorphism.

To reach a contradiction, it is enough to prove that Σ2(𝐵4, 𝐴) and
Σ2(𝐵4, 𝐴′) are not diffeomorphic!



𝐷 and 𝐷′ are not smoothly isotopic relative boundary
Suppose they are smoothly isotopic relative boundary. Then, so are the
annuli

Figure 7: The annuli 𝐴 (left) and 𝐴′ (right).

Fact: for 𝐹 2 a connected compact surface in 𝐵4, the double branched
cover Σ2(𝐵4, 𝐹 2) is unique up to diffeomorphism.
To reach a contradiction, it is enough to prove that Σ2(𝐵4, 𝐴) and
Σ2(𝐵4, 𝐴′) are not diffeomorphic!



Σ2(𝐵4, 𝐴) and Σ2(𝐵4, 𝐴′) are not diffeomorphic

Figure 8: The annuli 𝐴 (left) and 𝐴′ (right).



Σ2(𝐵4, 𝐴) and Σ2(𝐵4, 𝐴′) are not diffeomorphic

−2 0−2

Figure 9: Σ2(𝐵4, 𝐴) and Σ2(𝐵4, 𝐴′).

Claim: Σ2(𝐵4, 𝐴′) contains a smoothly embedded 2-sphere of
self-intersection number −2, but Σ2(𝐵4, 𝐴) does not. Hence, they
cannot be diffeomorphic.
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Σ2(𝐵4, 𝐴) does not contain such a 2-sphere

For a Legendrian knot 𝐾 in (𝑆3, 𝜉𝑠𝑡𝑑), there are two classical invariants:

𝑡𝑏(𝐾) = 𝑤𝑟(𝐾) − #right cusps
𝑟(𝐾) = #downward left cusps − #upward right cusps

Example 1
The following Legendrian knots have (𝑡𝑏, 𝑟) = (−1, 0), (1, 0), (−3, 0).



Σ2(𝐵4, 𝐴) does not contain such a 2-sphere
We will need two additional results:
Theorem (Eliashberg, 1990)
Let 𝑊 4 be the 4-manifold obtain by attaching a 2-handle ℎ2 along a
Legendrian knot 𝐾 with framing 𝑡𝑏(𝐾) − 1. Then, 𝑊 admits the
structure of a Stein domain such that ⟨𝑐1(𝑊), ℎ2⟩ = 𝑟(𝐾)

−2−2

We compute: 𝑡𝑏(𝐾) = −1, 𝑟(𝐾) = −2. So 𝑊 4 admits a Stein structure
with ⟨𝑐1(𝑊), ℎ2⟩ = −2.



Σ2(𝐵4, 𝐴) does not contain such a 2-sphere

Theorem (Lisca-Matić, 1998)
Let 𝑊 4 be a Stein domain and 𝑆 a smoothly embedded 2-sphere with
[𝑆] ≠ 0 in 𝐻2(𝑊). Then, [𝑆]2 ≤ −2 and if equality holds, then
⟨𝑐1(𝑊), [𝑆]⟩ = 0.

Suppose there is a smoothly embedded 2-sphere 𝑆 in Σ2(𝐵4, 𝐴)
with [𝑆]2 = −2.
Then, [𝑆] = 𝜆ℎ2 for some 𝜆 ≠ 0.
0 = ⟨𝑐1(𝑊), [𝑆]⟩ = 𝜆⟨𝑐1(𝑊), ℎ2⟩ = −2𝜆 ≠ 0, contradiction!



An exotic pair of 4-manifolds

Corollary
Σ2(𝐵4, 𝐴) and Σ2(𝐵4, 𝐴′) are exotic 4-manifolds.

−2 0−2

Figure 10: Σ2(𝐵4, 𝐴) and Σ2(𝐵4, 𝐴′).



Larger tuples of exotically knotted disks rel boundary

Theorem A
Let 𝑛 ∈ ℕ. Any compact, connected surface with boundary admits a
2𝑛-tuple of smooth, proper embeddings in 𝐵4 that are pairwise
exotically knotted relative boundary.



Larger tuples of exotically knotted disks rel boundary

Figure 11: A pair of exotically knotted disks in 𝐵4 relative boundary.



Large tuples of exotically knotted surfaces

Theorem B
Let 𝑔 ≥ 0, ℎ ≥ 1 ∈ ℕ. The compact, connected, orientable surface with
boundary with-ℎ-holes and genus 𝑔 admits a (𝑔 + 1)ℎ-tuple of smooth,
proper embeddings in 𝐵4 that are pairwise exotically knotted.



Large tuples of exotically knotted surfaces

Figure 12: Four exotically knotted surfaces with-3-holes and genus 1 in 𝐵4.
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