Exotically knotted surfaces

Alejandro García Rivas Supervisors: Isaac Sundberg and Peter Teichner

Università di Bologna

January 23, 2025

Content

2 Kirby calculus

3 Exotically knotted disks relative boundary

By *exotic phenomena*, we understand *differentiable* objects which are equivalent from a *topological* point of view, but aren't from a *differentiable* one.

By *exotic phenomena*, we understand *differentiable* objects which are equivalent from a *topological* point of view, but aren't from a *differentiable* one.

Example

We say that a pair of smooth manifolds M, N is exotic if they are homeomorphic, but not diffeomorphic. By *exotic phenomena*, we understand *differentiable* objects which are equivalent from a *topological* point of view, but aren't from a *differentiable* one.

Example

We say that a pair of smooth manifolds M, N is exotic if they are homeomorphic, but not diffeomorphic.

The first discovery of exotic phenomena is due to Milnor. He proved:

Theorem (Milnor, 1956)

There exist exotic 7-spheres, i.e. smooth 7-manifolds which are homeomorphic but not diffeomorphic to S^7 .

Later on, Milnor and Kervaire were able to compute the exact number of exotic spheres in many dimensions:

Here: $K_n = \{\text{smooth structures on } S^n\}/\text{diffeomorphism.}$

Later on, Milnor and Kervaire were able to compute the exact number of exotic spheres in many dimensions:

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\#K_n$	1	1	1	?	1	1	28	2	8	6	992	1	3	2	16256

Here: $K_n = \{\text{smooth structures on } S^n\}/\text{diffeomorphism.}$

What about 4-manifolds?

Later on, Milnor and Kervaire were able to compute the exact number of exotic spheres in many dimensions:

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\#K_n$	1	1	1	?	1	1	28	2	8	6	992	1	3	2	16256

Here: $K_n = \{\text{smooth structures on } S^n\}/\text{diffeomorphism}.$

What about 4-manifolds?

- Whether there are exotic 4-spheres is an open problem (*smooth Poincaré conjecture in dimension* 4).
- There are uncountably many exotic \mathbb{R}^4 .
- Many other examples of exotic 4-manifolds are known.

Definition

A knot is the isotopy class of a smooth embedding $S^1 \hookrightarrow S^3$.

Definition

A knot is the isotopy class of a smooth embedding $S^1 \hookrightarrow S^3$.

Definition

A knot is said to be *slice* if it bounds an embedded disk in $B^4 = \partial S^3$.

Definition

A knot is the isotopy class of a smooth embedding $S^1 \hookrightarrow S^3$.

Definition

A knot is said to be *slice* if it bounds an embedded disk in $B^4 = \partial S^3$.

- It is called *topologically slice* if the disk is locally flat.
- It is called *smoothy slice* if the disk is smoothly embedded.

Definition

A knot is the isotopy class of a smooth embedding $S^1 \hookrightarrow S^3$.

Definition

A knot is said to be *slice* if it bounds an embedded disk in $B^4 = \partial S^3$.

- It is called *topologically slice* if the disk is locally flat.
- It is called *smoothy slice* if the disk is smoothly embedded.

The Conway knot is topologically slice, but not smoothly slice.

In this talk, we will study the following exotic phenomenon.

Definition

Two smooth proper embeddings $\Sigma^2 \hookrightarrow W^4$ are said to be exotically knotted if they are isotopic through ambient homeomorphisms, but not through ambient diffeomorphisms. In this talk, we will study the following exotic phenomenon.

Definition

Two smooth proper embeddings $\Sigma^2 \hookrightarrow W^4$ are said to be exotically knotted if they are isotopic through ambient homeomorphisms, but not through ambient diffeomorphisms.

Theorem (Hayden, 2021)

There is a pair of exotically knotted disks in B^4 relative boundary.

In fact:

Theorem A

Let $n \in \mathbb{N}$. Any compact, connected surface with boundary admits a 2^n -tuple of smooth, proper embeddings in B^4 that are pairwise exotically knotted relative boundary.

In fact:

Theorem A

Let $n \in \mathbb{N}$. Any compact, connected surface with boundary admits a 2^n -tuple of smooth, proper embeddings in B^4 that are pairwise exotically knotted relative boundary.

Theorem B

Let $g \ge 0, h \ge 1 \in \mathbb{N}$. The compact, connected, orientable surface with boundary with-h-holes and genus g admits a (g+1)h-tuple of smooth, proper embeddings in B^4 that are pairwise exotically knotted.

Content

2 Kirby calculus

3 Exotically knotted disks relative boundary

Handlebody decompositions

Let $0 \le k \le n$. The *n*-dimensional k-handle is $h^k = D^k \times D^{n-k}$.

Definition

Let M be an n-manifold with boundary. Attaching a k-handle to M along an embedding $\varphi: S^{k-1} \times D^{n-k} \hookrightarrow \partial M$ consists of gluing h^k to M along φ to obtain the resulting manifold $M \cup_{\varphi} h^k$.

Handlebody decompositions

Let $0 \le k \le n$. The *n*-dimensional k-handle is $h^k = D^k \times D^{n-k}$.

Definition

Let M be an n-manifold with boundary. Attaching a k-handle to M along an embedding $\varphi: S^{k-1} \times D^{n-k} \hookrightarrow \partial M$ consists of gluing h^k to M along φ to obtain the resulting manifold $M \cup_{\varphi} h^k$.

Definition

A handlebody decomposition of M is a sequence of handle attachments so that the final manifold is diffeomorphic to M.

Handlebody decompositions

Let $0 \le k \le n$. The *n*-dimensional k-handle is $h^k = D^k \times D^{n-k}$.

Definition

Let M be an n-manifold with boundary. Attaching a k-handle to M along an embedding $\varphi: S^{k-1} \times D^{n-k} \hookrightarrow \partial M$ consists of gluing h^k to M along φ to obtain the resulting manifold $M \cup_{\varphi} h^k$.

Definition

A handlebody decomposition of M is a sequence of handle attachments so that the final manifold is diffeomorphic to M.

Example

The torus $S^1 \times S^1$ admits a handlebody decomposition consisting of one 0-handle, two 1-handles and one 2-handle.

Kirby diagrams

We seek a convenient way to describe handlebodies in dimension 4.

- Start with a single 0-handle D^4 .
- Up to isotopy, there is a unique embedding $S^0 \times D^3 \hookrightarrow \partial D^4 = S^3$. So there is a *unique* way to attach 1-handles.

Figure 1: Kirby diagrams for $S^1 \times D^3$ (up) and $(S^1 \times D^3) \# (S^1 \times D^3)$ (down).

Kirby diagrams

- A 2-handle attachment is described by $\varphi: S^1 \times D^2 \hookrightarrow \partial M$. This is determined by
 - \blacktriangleright a knot $S^1\times\{0\}\hookrightarrow\partial M,$ and
 - ▶ a framing of its normal bundle, i.e. an integer.

Figure 2: Kirby diagram for $S^2 \times D^2$ (left) and another more complicated Kirby diagram.

Topological invariants from Kirby diagrams

The fundamental group $\pi_1 M$:

 $\pi_1 M \cong \langle x, y | x y^{-1} y x^{-1} y \rangle \cong \langle x, y | y = 1 \rangle \cong \mathbb{Z}.$

Topological invariants from Kirby diagrams

The intersection form $Q_M: H_2(M) \times H_2(M) \to \mathbb{Z} \text{:}$

 Q_M is represented by the matrix:

$$\begin{bmatrix} -2 & 1 \\ 1 & -4 \end{bmatrix}$$

Kirby calculus

Kirby calculus \equiv rules for manipulating Kirby diagrams. -8

-2

Figure 3: Equivalent Kirby diagrams

Content

2 Kirby calculus

Figure 4: The disk D.

The disks $D, D^{'}$

Figure 5: The disks D and D'.

D and $D^{'}$ are topologically isototopic relative boundary

We use:

Theorem (Conway-Powell, 2021)

If $\pi_1(B^4 \smallsetminus D) \cong \pi_1(B^4 \smallsetminus D') \cong \mathbb{Z}$, then D and D' are topologically isotopic relative boundary.

Figure 6: The complement $B^4 \smallsetminus \nu D$.

 $\pi_1(B^4\smallsetminus\nu D)\cong \langle x,y|xy^{-1}yx^{-1}y\rangle\cong \langle x,y|y=1\rangle\cong\mathbb{Z}$

D and $D^{'}$ are not smoothly isotopic relative boundary

Suppose they are smoothly isotopic relative boundary. Then, so are the annuli

Figure 7: The annuli A (left) and A' (right).

D and D' are not smoothly isotopic relative boundary

Suppose they are smoothly isotopic relative boundary. Then, so are the annuli

Figure 7: The annuli A (left) and A' (right).

Fact: for F^2 a connected compact surface in B^4 , the double branched cover $\Sigma_2(B^4, F^2)$ is unique up to diffeomorphism.

D and $D^{'}$ are not smoothly isotopic relative boundary

Suppose they are smoothly isotopic relative boundary. Then, so are the annuli

Figure 7: The annuli A (left) and A' (right).

Fact: for F^2 a connected compact surface in B^4 , the double branched cover $\Sigma_2(B^4, F^2)$ is unique up to diffeomorphism. To reach a contradiction, it is enough to prove that $\Sigma_2(B^4, A)$ and $\Sigma_2(B^4, A')$ are not diffeomorphic!

$\Sigma_{2}(B^{4},A)$ and $\Sigma_{2}(B^{4},A^{'})$ are not diffeomorphic

Figure 8: The annuli A (left) and A' (right).

$\Sigma_{2}(B^{4},A)$ and $\Sigma_{2}(B^{4},A^{'})$ are not diffeomorphic

Figure 9: $\Sigma_2(B^4, A)$ and $\Sigma_2(B^4, A')$.

$\Sigma_{2}(B^{4}, A)$ and $\Sigma_{2}(B^{4}, A^{'})$ are not diffeomorphic

Figure 9: $\Sigma_2(B^4, A)$ and $\Sigma_2(B^4, A')$.

Claim: $\Sigma_2(B^4, A')$ contains a smoothly embedded 2-sphere of self-intersection number -2, but $\Sigma_2(B^4, A)$ does not. Hence, they cannot be diffeomorphic.

$\Sigma_2(B^4, A)$ does not contain such a 2-sphere

For a Legendrian knot K in (S^3, ξ_{std}) , there are two classical invariants:

$$tb(K) = wr(K) - \#$$
right cusps
 $r(K) = \#$ downward left cusps - #upward right cusps

Example 1

The following Legendrian knots have (tb, r) = (-1, 0), (1, 0), (-3, 0).

$\Sigma_2(B^4, A)$ does not contain such a 2-sphere

We will need two additional results:

Theorem (Eliashberg, 1990)

Let W^4 be the 4-manifold obtain by attaching a 2-handle h^2 along a Legendrian knot K with framing tb(K) - 1. Then, W admits the structure of a Stein domain such that $\langle c_1(W), h^2 \rangle = r(K)$

We compute: tb(K) = -1, r(K) = -2. So W^4 admits a Stein structure with $\langle c_1(W), h^2 \rangle = -2$.

Theorem (Lisca-Matić, 1998)

Let W^4 be a Stein domain and S a smoothly embedded 2-sphere with $[S] \neq 0$ in $H_2(W)$. Then, $[S]^2 \leq -2$ and if equality holds, then $\langle c_1(W), [S] \rangle = 0$.

- Suppose there is a smoothly embedded 2-sphere S in $\Sigma_2(B^4, A)$ with $[S]^2 = -2$.
- Then, $[S] = \lambda h^2$ for some $\lambda \neq 0$.
- $0 = \langle c_1(W), [S] \rangle = \lambda \langle c_1(W), h^2 \rangle = -2\lambda \neq 0$, contradiction!

An exotic pair of 4-manifolds

Corollary

 $\Sigma_2(B^4,A)$ and $\Sigma_2(B^4,A')$ are exotic 4-manifolds.

Theorem A

Let $n \in \mathbb{N}$. Any compact, connected surface with boundary admits a 2^n -tuple of smooth, proper embeddings in B^4 that are pairwise exotically knotted relative boundary.

Larger tuples of exotically knotted disks rel boundary

Figure 11: A pair of exotically knotted disks in B^4 relative boundary.

Theorem B

Let $g \ge 0, h \ge 1 \in \mathbb{N}$. The compact, connected, orientable surface with boundary with-h-holes and genus g admits a (g+1)h-tuple of smooth, proper embeddings in B^4 that are pairwise exotically knotted.

Large tuples of exotically knotted surfaces

