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Perturbations around Black Holes
▶ On a Lorentzian (M,g), Rµν = 0 vacuum, consider scalar z (s = 0),

Maxwell vµ (s = 1) and Einstein pµν (s = 2) perturbations:

(SW ) □z = 0,
(Max) (VW ) □vµ −∇µ∇νvν = 0

(vµ = ∇µε⇝ □ε = 0 residual gauge dynamics)

(Ein) (LW ) □pµν − 2 4Rµ
λκ
νpλκ − 2∇(µ∇λpν)λ = 0

(pµν = ∇(µvν) ⇝ □vµ = 0 residual gauge dynamics)

▶ Under harmonic gauges (∇µvµ = 0 and ∇νpµν = ∇ν(pµν − 1
2gµν tr p) = 0)

we get the vector wave and Lichnerowicz wave equations.
▶ Advantages: well known regularity properties for solutions in harmonic

gauge
▶ Disadvantages: reduction to master equations and separation of

variables is usually done in Regge-Wheeler (Schwarzschild) or radiation
(Kerr) gauges; not obvious in harmonic gauge.
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Schwarzschild background
▶ Schwarzschild: spherically symmetric, static black hole (Rµν = 0),

g = −f (dt)2 + f−1(dr)2 + r2
(

dθ2 + sin2 θ (dφ)2
)
, f (r) = 1 − 2M

r
.

▶ Full separation of variables for any s = 0,1,2:

Φ(t , r , θ, φ) = {ϕωlm(r)Y lm(θ, φ)}e−iωt

▶ Harmonic gauge equations result in complicated, coupled radial
mode equations!

▶ But gauge invariant modes decouple and satisfy spin-s
Regge-Wheeler equations Dsϕ

s(r) = 0.

Dsϕ := ∂r f∂rϕ− l(l + 1) + (1 − s2)2M
r

r2 ϕ+ ω2 1
f
ϕ
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Radial Mode Equation: VWω[v ] = 0

Explicitly, vµ → v(r) = (vt , vr ,u | w):

(odd) ∂rBl r2f∂r w +

(
ω2 r2

f
− Bl

)
Blw + Bl

2M
r

w = 0,

(even)



−∂r

1
f r2f∂r vt

∂r f r2f∂r vr
∂rBl r2f∂r u


+

(
ω2 r2

f
− Bl

)

−1

f vt
f vr

Bl u




+ iω
2M
f




vr
−vt
0


+




0 0 0
0 −2f 2 2Bl f
0 2Bl f Bl

2M
r






vt
vr
u


 = 0,

where f (r) = 1 − 2M
r and Bl = l(l + 1).
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Radial Mode Equation: LWω[p] = 0 (odd sector)

Explicitly, pµν → p(r) = (htt ,htr ,hrr , jt , jr ,K ,G | ht ,hr ,h2):



∂r (−2Bl

f r2f∂r )ht
∂r (2Bl f r2f∂r )hr

∂r (
Al
2 r2f∂r )h2


− Bl



−2Bl

f ht
2Bl f hr

Al
2 h2




+



−4Bl

f
2M
r 0 0

0 −8Bl f (1 − 3M
r ) 2Al f

0 2Al f Al






ht
hr
h2




−iω 4M
f




0 −Bl 0
Bl 0 0
0 0 0






ht
hr
h2


+ ω2 r2

f



−2Bl

f ht
2Bl f hr

Al
2 h2


 = 0

where f (r) = 1 − 2M
r , Al = (l − 1)l(l + 1)(l + 2) and Bl = l(l + 1)
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Radial Mode Equation: LWω[p] = 0 (even sector)



∂r (−2 r2f∂r )htr

∂r (−2Bl
f r2f∂r ) jt

∂r (
1
f 2 r2f∂r )htt

∂r (f 2 r2f∂r )hrr
∂r (2 r2f∂r )K

∂r (2Bl f r2f∂r ) jr
∂r (

Al
2 r2f∂r )G




− Bl




−2 htr

−2Bl
f jt
1
f 2 htt

f 2 hrr
2 K

2Bl f jr
Al
2 G







2(f 2+1)
f −4Bl 0 0 0 0 0

−4Bl −4Bl
f

2M
r 0 0 0 0 0

0 0 4M2

2f 3r2 − ( 2M
r +4f )

2f
2M
r

2
f

2M
r 0 0

0 0 − ( 2M
r +4f )

2f
2M
e

f ( 4M2

r2 −8f 2)

2 4f (1 − 3M
r ) 4Bl f 2 0

0 0 2
f

2M
r 4f (1 − 3M

r ) −4(1 − 4M
r ) −4Bl f 0

0 0 0 4Bl f 2 −4Bl f −8Bl f (1 − 3M
r ) 2Al f

0 0 0 0 0 2Al f Al







htr
jt
htt
hrr
K
jr
G




−iω 4M
f




0 0 −1
f −f 0 0 0

0 0 0 0 0 −Bl 0
1
f 0 0 0 0 0 0
f 0 0 0 0 0 0
0 0 0 0 0 0 0
0 Bl 0 0 0 0 0
0 0 0 0 0 0 0







htr
jt
htt
hrr
K
jr
G




+ ω2 r2

f




−2 htr

−2Bl
f jt
1
f 2 htt

f 2 hrr
2 K

2Bl f jr
Al
2 G




= 0

where f (r) = 1 − 2M
r , Al = (l − 1)l(l + 1)(l + 2) and Bl = l(l + 1)
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Simplified Radial Mode Equations
▶ Vector wave equation [arXiv:1711.00585]:

▶ VW odd
ω ∼ D1 VW even

ω ∼

▶ Lichnerowicz wave equation [arXiv:2004.09651]:

▶ LW odd
ω ∼

▶ LW even
ω ∼

▶ Hierarchy of modes:
pure gauge, gauge invariant, constraint violating.

(see 2004.09651 or youtu.be/dy-QO5NFHC0 for details.)
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Simplification of a Differential Equation
▶ A simplification is an isomorphism E [ϕ] = 0 ∼ Ẽ [ϕ̃] = 0 from a

more complicated PDE to a simpler PDE.
▶ Q: What is a(n iso)morphism between Differential Equations?

E [ϕ] = 0 k
⇝ Ẽ [ϕ̃] = 0

Ẽ [k [ϕ]] = g[E [ϕ]]

k̃ ◦ k = id − h ◦ E

k ◦ k̃ = id − h̃ ◦ Ẽ

E [k̃ [ϕ̃]] = g̃[Ẽ [ϕ̃]]

g̃ ◦ g = id − E ◦ h − h′ ◦ E ′

g ◦ g̃ = id − Ẽ ◦ h̃ − h̃′ ◦ Ẽ ′

• •

• •

• •

E

k

Ẽ

k̃

g

h

E ′

g̃

h̃

Ẽ ′h′

· · ·

h̃′

A: A differential operator that sends solutions to solutions (with
evidence). An isomorphism is invertible on-shell (with evidence).
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E [k̃ [ϕ̃]] = g̃[Ẽ [ϕ̃]]
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▶ Q: What is a(n iso)morphism between Differential Equations?

E [ϕ] = 0 k
⇝ Ẽ [ϕ̃] = 0

Ẽ [k [ϕ]] = g[E [ϕ]]

k̃ ◦ k = id − h ◦ E

k ◦ k̃ = id − h̃ ◦ Ẽ

E [k̃ [ϕ̃]] = g̃[Ẽ [ϕ̃]]

g̃ ◦ g = id − E ◦ h − h′ ◦ E ′

g ◦ g̃ = id − Ẽ ◦ h̃ − h̃′ ◦ Ẽ ′

• •

• •

• •

E

k

Ẽ

k̃

g

h

E ′

g̃

h̃

Ẽ ′h′

· · ·

h̃′

A: A differential operator that sends solutions to solutions (with
evidence). An isomorphism is invertible on-shell (with evidence).
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Kerr background
▶ Kerr: axially symmetric, stationary black hole (Rµν = 0),

g = −∆r

Σ
(dτ + y2dψ)2 +

∆y

Σ
(dτ − r2dψ)2 + Σ

(
(dr)2

∆r
+

(dy)2

∆y

)
,

to Boyer-Lindquist coords: τ = t − aφ, y = a cos θ, ψ = φ/a,

Σ = r2 + y2, ∆y = a2 − y2, ∆r = r(r − 2M) + a2,

where M — mass, a — angular momentum.
▶ Partial separation of variables for s = 1:

Φ = ϕωm(r , y)e−iωteimψ, □Φ = 0 ⇝ VWωm[ϕ(r , y)] = 0

▶ Teukolsky scalars (Φ±1 = Φ±1[ϕ]) decouple, VW [ϕ] = 0⇝ T ±1[Φ±1] = 0,
and the Teukolsky Master Equation fully separates.

Φ±1
ωm(r , y) = R±1

ωmλ(r)Y
±1
ωmλ(y), T [Φ] = 0 ⇝ Tr [R(r)] = 0, Ty [Y (y)] = 0.
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Full separation of variables in harmonic gauge?

▶ On Kerr the fully separable Teukolsky Master Equation
T ±1
ωm [Φ±1] = 0 accounts only for a special combination of the

components of VWωm[ϕ] = 0, s = 1 in harmonic gauge.
▶ Q: Could a more sophisticated approach fully separate

VWωm[ϕ(r , y)] = 0, like on Schwarzschild?
▶ Recent work on Hertz potentials on Kerr (for s = 1,2) reveals a

similar hierarchy of modes as in Schwarzschild: pure gauge,
gauge invariant, constraint violating; all “governed” by Teukolsky
Master Equations equations.
[Lunin 1708.06766, Frolov-Krtouš-Kubizňák 1802.09491, Dolan 1906.04808,
Dolan-Durkan-Kavanagh-Wardell 2011.03548 2108.06344 2306.16459]
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Approach via triangular simplification
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• •

• •

E

P

DP

E′

P ′

D′
P

P ′′

• • •

• •

• •

• •


E

P





 D̄

D̄⊥





0 E⊥

P

0 Ω




[
D D⊥

]

[
id 0

]


id

0





 E′ 0

−P ′ DP





D̄′

EE D̄′
EP

D̄′
PE D̄′

PP





 Ω′ −Ω′E⊥

P Ω̄

Ω̄′′E′⊥
P Ω′ −Ω̄′′E′⊥

P Ω′E⊥
P Ω̄





D′

EE D′
EP

D′
PE D′

PP





0 0

0 Ω̄




[
P ′′ D′

P

]


D̄′′

EE D̄′′
EP

D̄′′
PE D̄′′

PP




[
−E′⊥

P Ω′′
]


D′′
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EP

D′′
PE D′′

PP





Ω̄′ 0

0 0




id

id


 0

Ω̄′′




• • •

• • •

• •

• •




E

P

T





 D̄

D̄⊥







DD T⊥
P

0 E⊥
P

0 Ω




[
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]

[
id 0

]

DD


id

0





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



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
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
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
 0
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


[
d ∆
0 e

]2
= 0 ⇐⇒ d∆ = −∆e,

dϕ = ϕd′

d′ϕ̄ = ϕ̄d

ϕϕ̄ = id−hd− dh

ϕ̄ϕ = id′ −h′d′ − d′h′

[
d ∆
0 e

] [
ϕ −h∆
0 id

]
=

[
dϕ ∆− dh∆
0 e

]
=

[
ϕd′ ϕϕ̄∆+ h(−∆e = d∆)
0 id

]
=

[
ϕ −h∆
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d′ ϕ̄∆
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0 e
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d ∆
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ϕ̄ 0
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ϕ −h∆
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]
=
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id′ 0
0 id

]
−
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h′ H ′

0 0
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d′ ϕ̄∆
0 e
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−
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d′ ϕ̄∆
0 e
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h′ H ′

0 0

]

+

[
0 d′H ′ +H ′e− (ϕ̄h− h′ϕ̄)∆
0 0

]

• • • • • •

• • • • • •

• • • • •
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Approach via triangular simplification

▶ Vector wave equation on Kerr simplifies to:

VWωm ∼



T 0
ωm ∆gi ∆gc

0 T ±1
ωm ∆ic

0 0 T 0
ωm




▶ pure gauge / gauge invariant modes:
∆gi = 0 (via work on Hertz potentials)

▶ gauge invariant / constraint violating modes:
∆ic =? (Work in Progress)

▶ pure gauge / constraint violating modes:
∆gc ̸= 0 (probably, ̸= even on Schwarzschild)

▶ N.B.: The diagonals T 0 and T ±1 all fully separate (in r and y ).
If ∆ic = 0 and ∆gc is sufficiently simple, then VWωm separates!
Or not!
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If ∆ic = 0 and ∆gc is sufficiently simple, then VWωm separates!
Or not!
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Discussion

▶ Harmonic gauge s = 1,2 (Maxwell, linearized gravity) black hole
perturbations have attractive theoretical properties, but are
intractably complex.

▶ Triangular simplification makes working with these equations
tractable!
▶ Schwarzschild: already simplified
▶ Kerr: Work in Progress for s = 1,

could shed light on full separability of □Φ = 0
▶ Similar approach should work for s = 2.

Thank you for your attention!
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