Simplifying harmonic gauge perturbations around black holes [arXiv:1711.00585, 1801.09800, 2004.09651] + WIP

Igor Khavkine

Institute of Mathematics Czech Academy of Sciences (Prague)

21 Jan 2025 45th Winter School on Geometry and Physics 18–25 Jan 2025, Srní, Czech Republic

Perturbations around Black Holes

• On a Lorentzian (M, g), $R_{\mu\nu} = 0$ vacuum, consider scalar z (s = 0), Maxwell v_{μ} (s = 1) and Einstein $p_{\mu\nu}$ (s = 2) perturbations:

 $\begin{array}{ll} (SW) & \Box z = 0, \\ (Max) (VW) & \Box v_{\mu} - \nabla_{\mu} \nabla^{\nu} v_{\nu} = 0 \\ & (v_{\mu} = \nabla_{\mu} \varepsilon \mbox{ or blace } U \mbox{ residual gauge dynamics}) \\ (Ein) (LW) & \Box p_{\mu\nu} - 2 \,{}^{4}\!R_{\mu}{}^{\lambda\kappa}{}_{\nu} p_{\lambda\kappa} - 2 \,\nabla_{(\mu} \nabla^{\lambda} \overline{p}_{\nu)\lambda} = 0 \\ & (p_{\mu\nu} = \nabla_{(\mu} v_{\nu)} \mbox{ or blace } U \mbox{ residual gauge dynamic} \end{array}$

- Under harmonic gauges ($\nabla^{\mu}v_{\mu} = 0$ and $\nabla^{\nu}\overline{p}_{\mu\nu} = \nabla^{\nu}(p_{\mu\nu} \frac{1}{2}g_{\mu\nu} \operatorname{tr} p) = 0$) we get the vector wave and Lichnerowicz wave equations.
- Advantages: well known regularity properties for solutions in harmonic gauge
- Disadvantages: reduction to master equations and separation of variables is usually done in Regge-Wheeler (Schwarzschild) or radiation (Kerr) gauges; not obvious in harmonic gauge.

Perturbations around Black Holes

• On a Lorentzian (M, g), $R_{\mu\nu} = 0$ vacuum, consider scalar z (s = 0), Maxwell v_{μ} (s = 1) and Einstein $p_{\mu\nu}$ (s = 2) perturbations:

$$(SW) \quad \Box z = 0,$$

$$(Max) (VW) \quad \Box v_{\mu} - \nabla_{\mu} \nabla^{\nu} v_{\nu} = 0$$

$$(v_{\mu} = \nabla_{\mu} \varepsilon \rightsquigarrow \Box \varepsilon = 0 \text{ residual gauge dynamics})$$

$$(Ein) (LW) \quad \Box p_{\mu\nu} - 2 {}^{4}R_{\mu}{}^{\lambda\kappa}{}_{\nu}p_{\lambda\kappa} - 2 \nabla_{(\mu} \nabla^{\lambda} \overline{p}_{\nu)\lambda} = 0$$

$$(p_{\mu\nu} = \nabla_{(\mu} v_{\nu)} \rightsquigarrow \Box v_{\mu} = 0 \text{ residual gauge dynamics})$$

- Under harmonic gauges ($\nabla^{\mu}v_{\mu} = 0$ and $\nabla^{\nu}\overline{p}_{\mu\nu} = \nabla^{\nu}(p_{\mu\nu} \frac{1}{2}g_{\mu\nu} \operatorname{tr} p) = 0$) we get the vector wave and Lichnerowicz wave equations.
- Advantages: well known regularity properties for solutions in harmonic gauge
- Disadvantages: reduction to master equations and separation of variables is usually done in Regge-Wheeler (Schwarzschild) or radiation (Kerr) gauges; not obvious in harmonic gauge.

Harmonic Gauge and its Advantages

• On a Lorentzian (M, g), $R_{\mu\nu} = 0$ vacuum, consider scalar z (s = 0), Maxwell v_{μ} (s = 1) and Einstein $p_{\mu\nu}$ (s = 2) perturbations:

 $\begin{array}{ll} (SW) & \Box z = 0, \\ (Max) \ (VW) & \Box v_{\mu} - \nabla_{\mu} \nabla^{\nu} v_{\nu} = 0 \\ & (v_{\mu} = \nabla_{\mu} \varepsilon \rightsquigarrow \Box \varepsilon = 0 \text{ residual gauge dynamics}) \\ (Ein) \ (LW) & \Box p_{\mu\nu} - 2 \,{}^{4}\!R_{\mu}{}^{\lambda\kappa}{}_{\nu}p_{\lambda\kappa} - 2 \,\nabla_{(\mu} \nabla^{\lambda} \overline{p}_{\nu)\lambda} = 0 \\ & (p_{\mu\nu} = \nabla_{(\mu} v_{\nu)} \rightsquigarrow \Box v_{\mu} = 0 \text{ residual gauge dynamics}) \end{array}$

- Under harmonic gauges ($\nabla^{\mu}v_{\mu} = 0$ and $\nabla^{\nu}\overline{p}_{\mu\nu} = \nabla^{\nu}(p_{\mu\nu} \frac{1}{2}g_{\mu\nu} \operatorname{tr} p) = 0$) we get the vector wave and Lichnerowicz wave equations.
- Advantages: well known regularity properties for solutions in harmonic gauge
- Disadvantages: reduction to master equations and separation of variables is usually done in Regge-Wheeler (Schwarzschild) or radiation (Kerr) gauges; not obvious in harmonic gauge.

Harmonic Gauge and its Advantages

• On a Lorentzian (M, g), $R_{\mu\nu} = 0$ vacuum, consider scalar z (s = 0), Maxwell v_{μ} (s = 1) and Einstein $p_{\mu\nu}$ (s = 2) perturbations:

 $\begin{array}{ll} (SW) & \Box z = 0, \\ (Max) \ (VW) & \Box v_{\mu} - \nabla_{\mu} \nabla^{\nu} v_{\nu} = 0 \\ & (v_{\mu} = \nabla_{\mu} \varepsilon \rightsquigarrow \Box \varepsilon = 0 \text{ residual gauge dynamics}) \\ (Ein) \ (LW) & \Box p_{\mu\nu} - 2 \,{}^{4}\!R_{\mu}{}^{\lambda\kappa}{}_{\nu}p_{\lambda\kappa} - 2 \,\nabla_{(\mu} \nabla^{\lambda} \overline{p}_{\nu)\lambda} = 0 \\ & (p_{\mu\nu} = \nabla_{(\mu} v_{\nu)} \rightsquigarrow \Box v_{\mu} = 0 \text{ residual gauge dynamics}) \end{array}$

- Under harmonic gauges ($\nabla^{\mu}v_{\mu} = 0$ and $\nabla^{\nu}\overline{p}_{\mu\nu} = \nabla^{\nu}(p_{\mu\nu} \frac{1}{2}g_{\mu\nu} \operatorname{tr} p) = 0$) we get the vector wave and Lichnerowicz wave equations.
- Advantages: well known regularity properties for solutions in harmonic gauge
- Disadvantages: reduction to master equations and separation of variables is usually done in Regge-Wheeler (Schwarzschild) or radiation (Kerr) gauges; not obvious in harmonic gauge.

Schwarzschild: spherically symmetric, static black hole $(R_{\mu\nu} = 0)$,

$$\mathbf{g} = -f(dt)^{2} + f^{-1}(dr)^{2} + r^{2}\left(d\theta^{2} + \sin^{2}\theta (d\varphi)^{2}\right), \quad f(r) = 1 - \frac{2M}{r}$$

$$\Phi(t, r, \theta, \varphi) = \{\phi_{\omega lm}(r) Y^{lm}(\theta, \varphi)\} e^{-i\omega t}$$

- Harmonic gauge equations result in complicated, coupled radial mode equations!
- ▶ But gauge invariant modes decouple and satisfy spin-*s* Regge-Wheeler equations $\mathcal{D}_s \phi^s(r) = 0$.

$$\mathcal{D}_{s}\phi := \partial_{r}f\partial_{r}\phi - \frac{l(l+1) + (1-s^{2})\frac{2M}{r}}{r^{2}}\phi + \omega^{2}\frac{1}{t}\phi$$

Schwarzschild: spherically symmetric, static black hole $(R_{\mu\nu} = 0)$,

$$\mathbf{g} = -f(\mathrm{d}t)^2 + f^{-1}(\mathrm{d}r)^2 + r^2\left(\mathrm{d}\theta^2 + \sin^2\theta\,(\mathrm{d}\varphi)^2\right), \quad f(r) = 1 - \frac{2M}{r}$$

$$\Phi(t, r, \theta, \varphi) = \{\phi_{\omega \textit{lm}}(r) Y^{\textit{lm}}(\theta, \varphi)\} e^{-i\omega t}$$

- Harmonic gauge equations result in complicated, coupled radial mode equations!
- ▶ But gauge invariant modes decouple and satisfy spin-*s* Regge-Wheeler equations $\mathcal{D}_s \phi^s(r) = 0$.

$$\mathcal{D}_{s}\phi := \partial_{r}f\partial_{r}\phi - \frac{l(l+1) + (1-s^{2})\frac{2M}{r}}{r^{2}}\phi + \omega^{2}\frac{1}{t}\phi$$

Schwarzschild: spherically symmetric, static black hole $(R_{\mu\nu} = 0)$,

$$\mathbf{g} = -f(\mathrm{d}t)^2 + f^{-1}(\mathrm{d}r)^2 + r^2\left(\mathrm{d}\theta^2 + \sin^2\theta\,(\mathrm{d}\varphi)^2\right), \quad f(r) = 1 - \frac{2M}{r}$$

$$\Phi(t, \mathbf{r}, \theta, \varphi) = \{\phi_{\omega \textit{lm}}(\mathbf{r}) \mathbf{Y}^{\textit{lm}}(\theta, \varphi)\} \mathbf{e}^{-i\omega t}$$

- Harmonic gauge equations result in complicated, coupled radial mode equations!
- But gauge invariant modes decouple and satisfy spin-*s* Regge-Wheeler equations $\mathcal{D}_s \phi^s(r) = 0$.

$$\mathcal{D}_{\boldsymbol{s}}\phi := \partial_r f \partial_r \phi - \frac{l(l+1) + (1-\boldsymbol{s}^2)\frac{2M}{r}}{r^2}\phi + \omega^2 \frac{1}{f}\phi$$

Schwarzschild: spherically symmetric, static black hole $(R_{\mu\nu} = 0)$,

$$\mathbf{g} = -f(\mathrm{d}t)^2 + f^{-1}(\mathrm{d}r)^2 + r^2\left(\mathrm{d}\theta^2 + \sin^2\theta\,(\mathrm{d}\varphi)^2\right), \quad f(r) = 1 - \frac{2M}{r}$$

$$\Phi(t, r, \theta, \varphi) = \{\phi_{\omega lm}(r) Y^{lm}(\theta, \varphi)\} e^{-i\omega t}$$

- Harmonic gauge equations result in complicated, coupled radial mode equations!
- ▶ But gauge invariant modes decouple and satisfy spin-*s* Regge-Wheeler equations $\mathcal{D}_s \phi^s(r) = 0$.

$$\mathcal{D}_{s}\phi := \partial_{r}f\partial_{r}\phi - \frac{l(l+1) + (1-s^{2})\frac{2M}{r}}{r^{2}}\phi + \omega^{2}\frac{1}{f}\phi$$

Radial Mode Equation: $VW_{\omega}[v] = 0$

Explicitly, $v_{\mu} \rightarrow v(r) = (v_t, v_r, u \mid w)$:

(odd)
$$\partial_r \mathcal{B}_l r^2 f \partial_r w + \left(\omega^2 \frac{r^2}{f} - \mathcal{B}_l\right) \mathcal{B}_l w + \mathcal{B}_l \frac{2M}{r} w = 0,$$

(even)

$$\begin{bmatrix} -\partial_r \frac{1}{f} r^2 f \partial_r v_t \\ \partial_r f r^2 f \partial_r v_r \\ \partial_r \mathcal{B}_l r^2 f \partial_r u \end{bmatrix} + \left(\omega^2 \frac{r^2}{f} - \mathcal{B}_l \right) \begin{bmatrix} -\frac{1}{f} v_t \\ f v_r \\ \mathcal{B}_l u \end{bmatrix}$$
$$+ i \omega \frac{2M}{f} \begin{bmatrix} v_r \\ -v_t \\ 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & -2f^2 & 2\mathcal{B}_l f \\ 0 & 2\mathcal{B}_l f & \mathcal{B}_l \frac{2M}{r} \end{bmatrix} \begin{bmatrix} v_t \\ v_r \\ u \end{bmatrix} = 0,$$
$$\text{ where } f(r) = 1 - \frac{2M}{r} \text{ and } \mathcal{B}_l = l(l+1).$$

Radial Mode Equation: $LW_{\omega}[p] = 0$ (odd sector)

Explicitly,
$$p_{\mu\nu} \rightarrow p(r) = (h_{tt}, h_{tr}, h_{rr}, j_t, j_r, K, G \mid h_t, h_r, h_2)$$
:

$$\begin{bmatrix} \partial_{r}(-2\frac{B_{l}}{f}r^{2}f\partial_{r})h_{l} \\ \partial_{r}(2B_{l}fr^{2}f\partial_{r})h_{r} \\ \partial_{r}(\frac{A_{l}}{2}r^{2}f\partial_{r})h_{2} \end{bmatrix} - \mathcal{B}_{l} \begin{bmatrix} -2\frac{B_{l}}{f}h_{l} \\ 2B_{l}fh_{r} \\ \frac{A_{2}}{2}h_{2} \end{bmatrix} \\ + \begin{bmatrix} -4\frac{B_{l}}{f}\frac{2M}{r} & 0 & 0 \\ 0 & -8\mathcal{B}_{l}f(1-\frac{3M}{r}) & 2\mathcal{A}_{l}f \\ 0 & 2\mathcal{A}_{l}f & \mathcal{A}_{l} \end{bmatrix} \begin{bmatrix} h_{t} \\ h_{r} \\ h_{2} \end{bmatrix} \\ -i\omega\frac{4M}{f} \begin{bmatrix} 0 & -\mathcal{B}_{l} & 0 \\ \mathcal{B}_{l} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} h_{t} \\ h_{r} \\ h_{2} \end{bmatrix} + \omega^{2}\frac{r^{2}}{f} \begin{bmatrix} -2\frac{B_{l}}{f}h_{t} \\ 2B_{l}fh_{r} \\ \frac{A_{l}}{2}h_{2} \end{bmatrix} = 0$$

where $f(r) = 1 - \frac{2M}{r}$, $A_l = (l-1)l(l+1)(l+2)$ and $B_l = l(l+1)$

Radial Mode Equation: $LW_{\omega}[p] = 0$ (even sector)

Srní 21/01/2025

Vector wave equation [arXiv:1711.00585]:

Lichnerowicz wave equation [arXiv:2004.09651]:

Hierarchy of modes: pure gauge, gauge invariant, constraint violating. (see 2004.09651 or youtu.be/dy-Q05NFHC0 for details)

Igor Khavkine (CAS, Prague) Simplifying harmonic gauge perturbations Srní 21/01/2025

Vector wave equation [arXiv:1711.00585]:

$$\blacktriangleright VW_{\omega}^{\text{odd}} \sim \mathcal{D}_{1} \quad VW_{\omega}^{\text{even}} \sim \begin{bmatrix} \mathcal{D}_{0} & 0 & -\frac{2M}{r^{3}} \left(\mathcal{B}_{I} + \frac{M}{2r} \right) \\ 0 & \mathcal{D}_{1} & 0 \\ 0 & 0 & \mathcal{D}_{0} \end{bmatrix}$$

Lichnerowicz wave equation [arXiv:2004.09651]:

 \blacktriangleright LW^{odd}_{ω} \sim

 $\blacktriangleright ~ \textit{LW}_{\omega}^{\rm even} \sim$

Hierarchy of modes: pure gauge, gauge invariant, constraint violating. (see 2004.09651 or youtu.be/dy-Q05NFHC0 for details)

Igor Khavkine (CAS, Prague) Simplifying harmonic gauge perturbations Srní 21/01/2025

Vector wave equation [arXiv:1711.00585].

$$\blacktriangleright VW_{\omega}^{odd} \sim \mathcal{D}_{1} \quad VW_{\omega}^{even} \sim \begin{bmatrix} \mathcal{D}_{0} & 0 & -\frac{2M}{r^{3}} \left(\mathcal{B}_{I} + \frac{M}{2r} \right) \\ 0 & \mathcal{D}_{1} & 0 \\ 0 & 0 & \mathcal{D}_{0} \end{bmatrix}$$

Lichnerowicz wave equation [arXiv:2004.09651]:

$$\mathcal{L}W_{\omega}^{\text{odd}} \sim \begin{bmatrix} \mathcal{D}_{1} & 0 & \frac{2M}{r^{3}} \frac{\mathcal{D}_{1}}{3} \\ 0 & \mathcal{D}_{2} & 0 \\ 0 & 0 & \mathcal{D}_{1} \end{bmatrix}$$

$$\mathcal{L}W_{\omega}^{\text{even}} \sim \begin{bmatrix} \mathcal{D}_{0} & 0 & -\frac{2M}{r^{3}} (\mathcal{B}_{l} + \frac{M}{r}) & 0 & \frac{2M}{r^{3}} (\mathcal{B}_{l} + \frac{M}{r}) & 0 & \frac{2M}{r^{3}} \frac{\mathcal{B}_{l}}{3} & 0 \\ 0 & \mathcal{D}_{1} & 0 & 0 & 0 & -\frac{2M}{r^{3}} \frac{\mathcal{B}_{l}}{3} & 0 \\ 0 & 0 & \mathcal{D}_{0} & 0 & 0 & 0 & \frac{2M}{r^{3}} (\mathcal{B}_{l} + \frac{M}{r}) \\ 0 & 0 & 0 & \mathcal{D}_{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & \mathcal{D}_{0} & 0 & -\frac{2M}{r^{3}} (\mathcal{B}_{l} + \frac{M}{r}) \\ 0 & 0 & 0 & 0 & \mathcal{D}_{0} & 0 & -\frac{2M}{r^{3}} (\mathcal{B}_{l} + \frac{M}{r}) \\ 0 & 0 & 0 & 0 & \mathcal{D}_{0} & 0 & -\frac{2M}{r^{3}} (\mathcal{B}_{l} + \frac{M}{r}) \\ 0 & 0 & 0 & 0 & 0 & \mathcal{D}_{0} & 0 \end{bmatrix}$$

Hierarchy of modes: pure gauge, gauge invariant, constraint violating. (see 2004.09651 or youtu.be/dy-go5NFHC0 for details)

Igor Khavkine (CAS, Prague)

Simplifying harmonic gauge perturbations

Vector wave equation [arXiv:1711.00585].

$$\blacktriangleright VW_{\omega}^{\text{odd}} \sim \mathcal{D}_{1} \quad VW_{\omega}^{\text{even}} \sim \begin{bmatrix} \mathcal{D}_{0} & 0 & -\frac{2M}{r^{3}} \left(\mathcal{B}_{I} + \frac{M}{2r} \right) \\ 0 & \mathcal{D}_{1} & 0 \\ 0 & 0 & \mathcal{D}_{0} \end{bmatrix}$$

Lichnerowicz wave equation [arXiv:2004.09651]:

$$\begin{split} & \blacktriangleright \mathcal{LW}_{\omega}^{\text{odd}} \sim \begin{bmatrix} \mathcal{D}_{1} & 0 & \frac{2M}{r^{3}} \frac{\mathcal{B}_{l}}{3} \\ 0 & \mathcal{D}_{2} & 0 \\ 0 & 0 & \mathcal{D}_{1} \end{bmatrix} \\ & \blacktriangleright \mathcal{LW}_{\omega}^{\text{even}} \sim \begin{bmatrix} \mathcal{D}_{0} & 0 & -\frac{2M}{r^{3}} (\mathcal{B}_{l} + \frac{M}{r}) & 0 & \frac{2M}{r^{3}} (\mathcal{B}_{l} + \frac{M}{r}) & 0 & \frac{2M}{r^{3}} \frac{\mathcal{B}_{l}}{r^{3}} & 0 \\ 0 & \mathcal{D}_{1} & 0 & 0 & 0 & -\frac{2M}{r^{3}} \frac{\mathcal{B}_{l}}{2r^{4}} & 0 \\ 0 & 0 & \mathcal{D}_{0} & 0 & 0 & 0 & \frac{2M}{r^{3}} \frac{\mathcal{B}_{l}}{\mathcal{B}_{l} + \frac{M}{r}} \\ 0 & 0 & 0 & \mathcal{D}_{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & \mathcal{D}_{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \mathcal{D}_{1} & 0 \\ 0 & 0 & 0 & 0 & 0 & \mathcal{D}_{1} & 0 \end{bmatrix} \end{split}$$

Hierarchy of modes: pure gauge, gauge invariant, constraint violating. (see 2004.09651 or youtu.be/dy-Q05NFHC0 for details.)

Igor Khavkine (CAS, Prague)

Simplifying harmonic gauge perturbations

- A simplification is an isomorphism $E[\phi] = 0 \sim \tilde{E}[\tilde{\phi}] = 0$ from a more complicated PDE to a simpler PDE.
- Q: What is a(n iso)morphism between Differential Equations?

- A simplification is an isomorphism E[φ] = 0 ~ Ẽ[φ̃] = 0 from a more complicated PDE to a simpler PDE.
- Q: What is a(n iso)morphism between Differential Equations?

- A simplification is an isomorphism $E[\phi] = 0 \sim \tilde{E}[\tilde{\phi}] = 0$ from a more complicated PDE to a simpler PDE.
- Q: What is a(n iso)morphism between Differential Equations?

- A simplification is an isomorphism $E[\phi] = 0 \sim \tilde{E}[\tilde{\phi}] = 0$ from a more complicated PDE to a simpler PDE.
- Q: What is a(n iso)morphism between Differential Equations?

- A simplification is an isomorphism E[φ] = 0 ~ Ẽ[φ̃] = 0 from a more complicated PDE to a simpler PDE.
- Q: What is a(n iso)morphism between Differential Equations?

- A simplification is an isomorphism $E[\phi] = 0 \sim \tilde{E}[\tilde{\phi}] = 0$ from a more complicated PDE to a simpler PDE.
- Q: What is a(n iso)morphism between Differential Equations?

- A simplification is an isomorphism $E[\phi] = 0 \sim \tilde{E}[\tilde{\phi}] = 0$ from a more complicated PDE to a simpler PDE.
- Q: What is a(n iso)morphism between Differential Equations?

- A simplification is an isomorphism E[φ] = 0 ~ Ẽ[φ̃] = 0 from a more complicated PDE to a simpler PDE.
- Q: What is a(n iso)morphism between Differential Equations?

Kerr background

• Kerr: axially symmetric, stationary black hole ($R_{\mu\nu} = 0$),

$$\mathbf{g} = -\frac{\Delta_r}{\Sigma}(\mathrm{d}\tau + y^2\mathrm{d}\psi)^2 + \frac{\Delta_y}{\Sigma}(\mathrm{d}\tau - r^2\mathrm{d}\psi)^2 + \Sigma\left(\frac{(\mathrm{d}r)^2}{\Delta_r} + \frac{(\mathrm{d}y)^2}{\Delta_y}\right),$$

to Boyer-Lindquist coords: $\tau = t - \mathbf{a}\varphi$, $\mathbf{y} = \mathbf{a}\cos\theta$, $\psi = \varphi/\mathbf{a}$,

$$\Sigma = r^2 + y^2, \quad \Delta_y = a^2 - y^2, \quad \Delta_r = r(r - 2M) + a^2,$$

where *M* — mass, *a* — angular momentum.
▶ Partial separation of variables for *s* = 1:

$$\Phi = \phi_{\omega m}(r, y) e^{-i\omega t} e^{im\psi}, \quad \Box \Phi = 0 \quad \rightsquigarrow \quad VW_{\omega m}[\phi(r, y)] = 0$$

Teukolsky scalars (Φ^{±1} = Φ^{±1}[φ]) decouple, VW[φ] = 0 → T^{±1}[Φ^{±1}] = 0, and the Teukolsky Master Equation fully separates.

 $\Phi_{\omega m}^{\pm 1}(r, y) = R_{\omega m \lambda}^{\pm 1}(r) Y_{\omega m \lambda}^{\pm 1}(y), \quad \mathcal{T}[\Phi] = 0 \quad \rightsquigarrow \quad \mathcal{T}_r[R(r)] = 0, \mathcal{T}_y[Y(y)] = 0.$

Kerr background

• Kerr: axially symmetric, stationary black hole ($R_{\mu\nu} = 0$),

$$\mathbf{g} = -\frac{\Delta_r}{\Sigma}(\mathrm{d}\tau + y^2\mathrm{d}\psi)^2 + \frac{\Delta_y}{\Sigma}(\mathrm{d}\tau - r^2\mathrm{d}\psi)^2 + \Sigma\left(\frac{(\mathrm{d}r)^2}{\Delta_r} + \frac{(\mathrm{d}y)^2}{\Delta_y}\right),$$

to Boyer-Lindquist coords: $\tau = t - \mathbf{a}\varphi$, $\mathbf{y} = \mathbf{a}\cos\theta$, $\psi = \varphi/\mathbf{a}$,

$$\Sigma = r^2 + y^2, \quad \Delta_y = a^2 - y^2, \quad \Delta_r = r(r - 2M) + a^2,$$

where M — mass, a — angular momentum. Partial separation of variables for s = 1:

$$\Phi = \phi_{\omega m}(\mathbf{r}, \mathbf{y}) e^{-i\omega t} e^{im\psi}, \quad \Box \Phi = 0 \quad \rightsquigarrow \quad VW_{\omega m}[\phi(\mathbf{r}, \mathbf{y})] = 0$$

Teukolsky scalars (Φ^{±1} = Φ^{±1}[φ]) decouple, VW[φ] = 0 → T^{±1}[Φ^{±1}] = 0, and the Teukolsky Master Equation fully separates.

 $\Phi_{\omega m}^{\pm 1}(r, y) = R_{\omega m \lambda}^{\pm 1}(r) Y_{\omega m \lambda}^{\pm 1}(y), \quad \mathcal{T}[\Phi] = 0 \quad \rightsquigarrow \quad \mathcal{T}_r[R(r)] = 0, \\ \mathcal{T}_y[Y(y)] = 0.$

Kerr background

• Kerr: axially symmetric, stationary black hole ($R_{\mu\nu} = 0$),

$$\mathbf{g} = -\frac{\Delta_r}{\Sigma}(\mathrm{d}\tau + y^2\mathrm{d}\psi)^2 + \frac{\Delta_y}{\Sigma}(\mathrm{d}\tau - r^2\mathrm{d}\psi)^2 + \Sigma\left(\frac{(\mathrm{d}r)^2}{\Delta_r} + \frac{(\mathrm{d}y)^2}{\Delta_y}\right),$$

to Boyer-Lindquist coords: $\tau = t - \mathbf{a}\varphi$, $\mathbf{y} = \mathbf{a}\cos\theta$, $\psi = \varphi/\mathbf{a}$,

$$\Sigma = r^2 + y^2, \quad \Delta_y = a^2 - y^2, \quad \Delta_r = r(r - 2M) + a^2,$$

where *M* — mass, *a* — angular momentum.
▶ Partial separation of variables for *s* = 1:

$$\Phi = \phi_{\omega m}(\mathbf{r}, \mathbf{y}) e^{-i\omega t} e^{im\psi}, \quad \Box \Phi = 0 \quad \rightsquigarrow \quad VW_{\omega m}[\phi(\mathbf{r}, \mathbf{y})] = 0$$

Teukolsky scalars (Φ^{±1} = Φ^{±1}[φ]) decouple, VW[φ] = 0 → T^{±1}[Φ^{±1}] = 0, and the Teukolsky Master Equation fully separates.

$$\Phi_{\omega m}^{\pm 1}(r, y) = R_{\omega m \lambda}^{\pm 1}(r) Y_{\omega m \lambda}^{\pm 1}(y), \quad \mathcal{T}[\Phi] = 0 \quad \rightsquigarrow \quad \mathcal{T}_r[R(r)] = 0, \mathcal{T}_y[Y(y)] = 0.$$

Full separation of variables in harmonic gauge?

- On Kerr the fully separable Teukolsky Master Equation

 T^{±1}_{ωm}[Φ^{±1}] = 0 accounts only for a special combination of the components of VW_{ωm}[φ] = 0, s = 1 in harmonic gauge.
- **Q:** Could a more sophisticated approach fully separate $VW_{\omega m}[\phi(r, y)] = 0$, like on Schwarzschild?
- Recent work on Hertz potentials on Kerr (for s = 1,2) reveals a similar hierarchy of modes as in Schwarzschild: pure gauge, gauge invariant, constraint violating; all "governed" by Teukolsky Master Equations equations.
 - [Lunin 1708.06766, Frolov-Krtouš-Kubizňák 1802.09491, Dolan 1906.04808,

Dolan-Durkan-Kavanagh-Wardell 2011.03548 2108.06344 2306.16459]

Full separation of variables in harmonic gauge?

- On Kerr the fully separable Teukolsky Master Equation

 T^{±1}_{ωm}[Φ^{±1}] = 0 accounts only for a special combination of the components of VW_{ωm}[φ] = 0, s = 1 in harmonic gauge.
- Q: Could a more sophisticated approach fully separate VW_{ωm}[φ(r, y)] = 0, like on Schwarzschild?
- Recent work on Hertz potentials on Kerr (for s = 1,2) reveals a similar hierarchy of modes as in Schwarzschild: pure gauge, gauge invariant, constraint violating; all "governed" by Teukolsky Master Equations equations.
 - [Lunin 1708.06766, Frolov-Krtouš-Kubizňák 1802.09491, Dolan 1906.04808,
 - Dolan-Durkan-Kavanagh-Wardell 2011.03548 2108.06344 2306.16459]

Full separation of variables in harmonic gauge?

- On Kerr the fully separable Teukolsky Master Equation

 T^{±1}_{ωm}[Φ^{±1}] = 0 accounts only for a special combination of the components of VW_{ωm}[φ] = 0, s = 1 in harmonic gauge.
- Q: Could a more sophisticated approach fully separate VW_{ωm}[φ(r, y)] = 0, like on Schwarzschild?
- Recent work on Hertz potentials on Kerr (for s = 1, 2) reveals a similar hierarchy of modes as in Schwarzschild: pure gauge, gauge invariant, constraint violating; all "governed" by Teukolsky Master Equations equations.

[Lunin 1708.06766, Frolov-Krtouš-Kubizňák 1802.09491, Dolan 1906.04808,

Dolan-Durkan-Kavanagh-Wardell 2011.03548 2108.06344 2306.16459]

$$V\!W_{\omega m} \sim egin{bmatrix} \mathcal{T}^0_{\omega m} & \Delta_{gi} & \Delta_{gc} \ 0 & \mathcal{T}^{\pm 1}_{\omega m} & \Delta_{ic} \ 0 & 0 & \mathcal{T}^0_{\omega m} \end{bmatrix}$$

- pure gauge / gauge invariant modes: $\Delta_{gi} = 0 \text{ (via work on Hertz potentials)}$
- ▶ gauge invariant / constraint violating modes: Δ_{ic} =? (Work in Progress)
- ▶ pure gauge / constraint violating modes: $\Delta_{gc} \neq 0$ (probably, \neq even on Schwarzschild)
- ► N.B.: The diagonals T⁰ and T^{±1} all fully separate (in *r* and *y*). If Δ_{ic} = 0 and Δ_{gc} is sufficiently simple, then VW_{ωm} separates! Or not!

$$VW_{\omega m} \sim egin{bmatrix} \mathcal{T}^0_{\omega m} & \Delta_{gi} & \Delta_{gc} \ 0 & \mathcal{T}^{\pm 1}_{\omega m} & \Delta_{ic} \ 0 & 0 & \mathcal{T}^0_{\omega m} \end{bmatrix}$$

- pure gauge / gauge invariant modes: $\Delta_{gi} = 0$ (via work on Hertz potentials)
- ▶ gauge invariant / constraint violating modes: Δ_{ic} =? (Work in Progress)
- ▶ pure gauge / constraint violating modes: $\Delta_{gc} \neq 0$ (probably, \neq even on Schwarzschild)
- ► N.B.: The diagonals T⁰ and T^{±1} all fully separate (in *r* and *y*). If Δ_{ic} = 0 and Δ_{gc} is sufficiently simple, then VW_{ωm} separates! Or not!

$$VW_{\omega m} \sim egin{bmatrix} \mathcal{T}^0_{\omega m} & \Delta_{gi} & \Delta_{gc} \ 0 & \mathcal{T}^{\pm 1}_{\omega m} & \Delta_{ic} \ 0 & 0 & \mathcal{T}^0_{\omega m} \end{bmatrix}$$

- pure gauge / gauge invariant modes: $\Delta_{gi} = 0$ (via work on Hertz potentials)
- gauge invariant / constraint violating modes:
 Δ_{ic} =? (Work in Progress)
- ▶ pure gauge / constraint violating modes: $\Delta_{gc} \neq 0$ (probably, \neq even on Schwarzschild)
- ► N.B.: The diagonals T⁰ and T^{±1} all fully separate (in *r* and *y*). If Δ_{ic} = 0 and Δ_{gc} is sufficiently simple, then VW_{ωm} separates! Or not!

$$VW_{\omega m} \sim egin{bmatrix} \mathcal{T}^0_{\omega m} & \Delta_{gi} & \Delta_{gc} \ 0 & \mathcal{T}^{\pm 1}_{\omega m} & \Delta_{ic} \ 0 & 0 & \mathcal{T}^0_{\omega m} \end{bmatrix}$$

- pure gauge / gauge invariant modes: $\Delta_{gi} = 0$ (via work on Hertz potentials)
- gauge invariant / constraint violating modes:
 Δ_{ic} =? (Work in Progress)
- ▶ pure gauge / constraint violating modes: $\Delta_{gc} \neq 0$ (probably, \neq even on Schwarzschild)
- ► N.B.: The diagonals T⁰ and T^{±1} all fully separate (in *r* and *y*). If Δ_{ic} = 0 and Δ_{gc} is sufficiently simple, then VW_{ωm} separates! Or not!

$$VW_{\omega m} \sim egin{bmatrix} \mathcal{T}^0_{\omega m} & \Delta_{gi} & \Delta_{gc} \ 0 & \mathcal{T}^{\pm 1}_{\omega m} & \Delta_{ic} \ 0 & 0 & \mathcal{T}^0_{\omega m} \end{bmatrix}$$

- pure gauge / gauge invariant modes: $\Delta_{gi} = 0$ (via work on Hertz potentials)
- gauge invariant / constraint violating modes:
 Δ_{ic} =? (Work in Progress)
- ▶ pure gauge / constraint violating modes: $\Delta_{gc} \neq 0$ (probably, \neq even on Schwarzschild)
- N.B.: The diagonals T⁰ and T^{±1} all fully separate (in *r* and *y*).
 If Δ_{ic} = 0 and Δ_{gc} is sufficiently simple, then VW_{ωm} separates!
 Or not!

$$VW_{\omega m} \sim egin{bmatrix} \mathcal{T}^0_{\omega m} & \Delta_{gi} & \Delta_{gc} \ 0 & \mathcal{T}^{\pm 1}_{\omega m} & \Delta_{ic} \ 0 & 0 & \mathcal{T}^0_{\omega m} \end{bmatrix}$$

- pure gauge / gauge invariant modes: $\Delta_{gi} = 0$ (via work on Hertz potentials)
- gauge invariant / constraint violating modes:
 Δ_{ic} =? (Work in Progress)
- ▶ pure gauge / constraint violating modes: $\Delta_{gc} \neq 0$ (probably, \neq even on Schwarzschild)
- N.B.: The diagonals *T*⁰ and *T*^{±1} all fully separate (in *r* and *y*). If Δ_{*ic*} = 0 and Δ_{*gc*} is sufficiently simple, then *VW*_{ωm} separates! Or **not**!

- Harmonic gauge s = 1,2 (Maxwell, linearized gravity) black hole perturbations have attractive theoretical properties, but are intractably complex.
- Triangular simplification makes working with these equations tractable!
 - Schwarzschild: already simplified
 - Kerr: Work in Progress for s = 1, could shed light on full separability of □Φ = 0
- Similar approach should work for s = 2.

- Harmonic gauge s = 1,2 (Maxwell, linearized gravity) black hole perturbations have attractive theoretical properties, but are intractably complex.
- Triangular simplification makes working with these equations tractable!
 - Schwarzschild: already simplified
 - Kerr: Work in Progress for s = 1, could shed light on full separability of $\Box \Phi = 0$

Similar approach should work for s = 2.

- Harmonic gauge s = 1,2 (Maxwell, linearized gravity) black hole perturbations have attractive theoretical properties, but are intractably complex.
- Triangular simplification makes working with these equations tractable!
 - Schwarzschild: already simplified
 - Kerr: Work in Progress for s = 1, could shed light on full separability of $\Box \Phi = 0$

Similar approach should work for s = 2.

- Harmonic gauge s = 1,2 (Maxwell, linearized gravity) black hole perturbations have attractive theoretical properties, but are intractably complex.
- Triangular simplification makes working with these equations tractable!
 - Schwarzschild: already simplified
 - Kerr: Work in Progress for s = 1, could shed light on full separability of $\Box \Phi = 0$

Similar approach should work for s = 2.

- Harmonic gauge s = 1,2 (Maxwell, linearized gravity) black hole perturbations have attractive theoretical properties, but are intractably complex.
- Triangular simplification makes working with these equations tractable!
 - Schwarzschild: already simplified
 - Kerr: Work in Progress for s = 1, could shed light on full separability of $\Box \Phi = 0$
- Similar approach should work for s = 2.

- Harmonic gauge s = 1,2 (Maxwell, linearized gravity) black hole perturbations have attractive theoretical properties, but are intractably complex.
- Triangular simplification makes working with these equations tractable!
 - Schwarzschild: already simplified
 - Kerr: Work in Progress for s = 1, could shed light on full separability of $\Box \Phi = 0$
- Similar approach should work for s = 2.

Thank you for your attention!