On Quantitative Aspects of Symplectic Geometry

Daniel Komárek

Charles University

January 24,2025

▲ロト ▲聞 ト ▲臣 ト ▲臣 ト → 臣 → のへで

Charles University

Motivation

- It is impossible to construct local invariants of symplectic or contact manifolds (Darboux theorem).
- Symplectic capacities are global invariants preserved under symplectomorphisms which are monotonic with the respect to symplectic embeddings.

Motivation

- It is impossible to construct local invariants of symplectic or contact manifolds (Darboux theorem).
- Symplectic capacities are global invariants preserved under symplectomorphisms which are monotonic with the respect to symplectic embeddings.
- One kind of symplectic capacities arises from the Hutching's embedded contact homology – ECH capacities.
- ECH is a variant of Floer homology in dimension three. Applied to show an existence of a closed Reeb orbit in dimension three (the Weinstein conjecture) and to provide obstructions of embedding problems.

A symplectic manifold (M, ω) , where M is a (2n)-dimensional manifold and ω is a symplectic form, i.e. $d\omega = 0$ and ω is non-degenerate.

A contact manifold is a (2n + 1)-dimensional manifold Y equipped with a contact structure $\xi := \ker(\lambda)$, where contact form λ is a locally defined 1-form such that $\lambda \wedge (d\lambda)^n \neq 0$.

Image: A matrix and a matrix

A symplectic manifold (M, ω) , where M is a (2n)-dimensional manifold and ω is a symplectic form, i.e. $d\omega = 0$ and ω is non-degenerate.

A contact manifold is a (2n + 1)-dimensional manifold Y equipped with a contact structure $\xi := \ker(\lambda)$, where contact form λ is a locally defined 1-form such that $\lambda \wedge (d\lambda)^n \neq 0$.

A **Reeb vector field** is an unique vector field $R: Y \rightarrow TY$ such that

$$d\lambda(R,-)=0, \quad \lambda(R)=1.$$

A **Reeb orbit** γ is a closed orbit of the flow of *R*.

Pseudoholomorphic curves

Embedded contact homology 000 ECH capacities 0000000

From now on (Y, ξ) is a contact 3-manifold.

If γ is passing through a point $p \in Y$, then a linearization of the Reeb flow R along γ determines a symplectic linear map (2x2 matrix)

 $P_{\gamma} \colon \xi_{p} \to \xi_{p}.$

 γ is non-degenerate if 1 is not an eigenvalue of $P_{\gamma}.$ Assume non-degenerate orbits only.

Charles University

Pseudoholomorphic curves

Embedded contact homology 000 ECH capacities 0000000

From now on (Y, ξ) is a contact 3-manifold.

If γ is passing through a point $p \in Y$, then a linearization of the Reeb flow R along γ determines a symplectic linear map (2x2 matrix)

$$P_{\gamma} \colon \xi_{p} \to \xi_{p}.$$

 γ is non-degenerate if 1 is not an eigenvalue of $P_{\gamma}.$ Assume non-degenerate orbits only.

Eigenvalues ρ , ρ^{-1} of P_{γ} are either real: γ is **hyperbolic** (positive, or negative), or on the unit circle: γ is **elliptic**.

Daniel Komárek

Pseudoholomorphic curves in symplectizations

An almost complex structure on M is an operator $J \in Aut(TM)$ such that $J^2 = -1$.

An almost complex structure J on a symplectization $\mathbb{R} \times Y$ s.t.

▶ $J(\partial_s) = R$, where s is the \mathbb{R} coordinate,

$$\blacktriangleright J(\xi) = \xi,$$

• $d\lambda(v, Jv) > 0$ for all $0 \neq v \in \xi$,

• J is invariant under \mathbb{R} action on $\mathbb{R} \times Y$ that translates s,

is called admissible.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

A pseudoholomorphic curve is a differentiable map

$$u\colon (\Sigma,i)\to (\mathbb{R}\times Y,J)$$

s.t. $du \circ i = J \circ du$, where (Σ, i) is a punctured, compact Riemannian surface with a complex structure *i* and *u* is assymptotic to closed Reeb orbits at punctures as \mathbb{R} factor goes to $\pm \infty$.

Charles University

Image: A matrix and a matrix

A pseudoholomorphic curve is a differentiable map

$$u\colon (\Sigma,i) \to (\mathbb{R} \times Y,J)$$

s.t. $du \circ i = J \circ du$, where (Σ, i) is a punctured, compact Riemannian surface with a complex structure *i* and *u* is assymptotic to closed Reeb orbits at punctures as \mathbb{R} factor goes to $\pm \infty$.

Figure: A pseudoholomorphic curve assymptotic to α_i for i = 1, 2, 3 at the positive end and assymptotic to β_j for j = 1, 2, 3, 4 at the negative end.

Pseudoholomorphic curves

Embedded contact homology $\bullet \circ \circ \circ$

Embedded contact homology

Fix some $\Gamma \in H_1(Y; \mathbb{Z})$. Orbit set in class Γ is a set $\alpha := \{(\alpha_i, m_i)\}$ of distinct embedded Reeb orbits, with $m_i = 1$ if α_i is hyperbolic, s.t.

$$\sum_{i} m_{i}[\alpha_{i}] = \Gamma.$$

The chain complex $ECC_*(Y, \lambda, \Gamma, J)$ is generated, as \mathbb{Z}_2 modules, by those orbit sets.

Charles University

(日)

Embedded contact homology

Fix some $\Gamma \in H_1(Y; \mathbb{Z})$. Orbit set in class Γ is a set $\alpha := \{(\alpha_i, m_i)\}$ of distinct embedded Reeb orbits, with $m_i = 1$ if α_i is hyperbolic, s.t.

$$\sum_i m_i[\alpha_i] = \Gamma.$$

The chain complex $ECC_*(Y, \lambda, \Gamma, J)$ is generated, as \mathbb{Z}_2 modules, by those orbit sets.

Let α, β be orbit sets in Γ . A **differential** is defined as follows

$$\partial \alpha := \sum_{\beta} \#(\mathcal{M}_1(\alpha, \beta)/\mathbb{R})\beta,$$

where # is signed count and $\mathcal{M}_1(\alpha, \beta)$ is a moduli space of pseudoholomorphic curves in $\mathbb{R} \times Y$ assymptotic at positive ends to α and at negative ends to β such that their **ECH index** is 1, modulo translation.

Denote by $ECH_*(Y, \lambda, \Gamma, J)$ the homology of $ECC_*(Y, \lambda, \Gamma, J)$. Turns out that ECH does not depend on J or λ , but just ξ .

Charles University

Pseudoholomorphic curves

Embedded contact homology $O \bullet O$

Denote by $ECH_*(Y, \lambda, \Gamma, J)$ the homology of $ECC_*(Y, \lambda, \Gamma, J)$. Turns out that ECH does not depend on J or λ , but just ξ .

Example. An **ellipsoid** in \mathbb{C}^2 for a, b > 0 is

$$E(a,b) := \left((z_1, z_2) \in \mathbb{C}^2 \Big| rac{\pi |z_1|^2}{a} + rac{\pi |z_2|^2}{b} \leq 1
ight)$$

with $\lambda = \frac{1}{2} \sum_{i=1}^{2} (x_i dy_i - y_i dx_i)$, where $z_i = x_i + y_i$.

The ECH of an ellipsoid is given by

$$\mathsf{ECH}_*(\partial \mathsf{E}(\mathsf{a},\mathsf{b}),\lambda,0,J) = egin{cases} \mathbb{Z}_2, & *=0,2,4,\ldots, \\ 0, & ext{otherwise.} \end{cases}$$

Charles University

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Daniel Komárek

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Charles University

More about ECH index

- If J is regular, α, β two orbit sets and $C \in \mathcal{M}(\alpha, \beta)$ a pseudoholomorphic curve, then
 - I(C) ≥ 0, with an equality iff C is an union of trivial cylinders with multiplicities,
 - ▶ if I(C) = 1, then $C = C_0 \sqcup C_1$, where $I(C_0) = 0$ and C_1 is embedded.

Symplectic capacities

A symplectic capacity is an assignment

- $c \colon \{\text{Symplectic manifolds of dim } 2n\} \to ([0,\infty],\leq), \text{ satisfying }$
 - $c(M, \omega) \leq c(M', \omega')$ if there is a symplectic embedding $(M, \omega) \rightarrow (M', \omega')$,
 - $c(M, \alpha \omega) = \alpha c(M, \omega)$ for $\alpha > 0$,
 - ▶ $0 < c(B^{2n}(1))$ and $c(B^2(1) \times \mathbb{R}^{2n-2}) < \infty$.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Symplectic capacities

A symplectic capacity is an assignment

- $c \colon \{\text{Symplectic manifolds of dim } 2n\} \to ([0,\infty],\leq), \text{ satisfying }$
 - $c(M, \omega) \leq c(M', \omega')$ if there is a symplectic embedding $(M, \omega) \rightarrow (M', \omega')$,

•
$$c(M, \alpha \omega) = \alpha c(M, \omega)$$
 for $\alpha > 0$,

▶ $0 < c(B^{2n}(1))$ and $c(B^2(1) \times \mathbb{R}^{2n-2}) < \infty$.

Simplest example is a *Gromov radius* of (M, ω) :

$$c_B(M,\omega) := \sup\{\alpha > \mathsf{0} \mid B^{2n}(\alpha) \to (M,\omega)\}.$$

Gromov's non-squeezing theorem imply that

$$c_B(B^2(1)\times\mathbb{R}^{2n-2})=1.$$

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

ECH capacities

Symplectic action of α is $\mathcal{A}(\alpha) := \sum_{i} m_i \int_{\alpha_i} \lambda$.

Filtered $ECH^{L}_{*}(Y, \lambda, \Gamma)$ is the homology of the ECH chain subcomplex spanned by generators with action less than $L \in \mathbb{R}$.

ECH capacities

Symplectic action of α is $\mathcal{A}(\alpha) := \sum_{i} m_i \int_{\alpha_i} \lambda$.

Filtered $ECH_*^L(Y, \lambda, \Gamma)$ is the homology of the ECH chain subcomplex spanned by generators with action less than $L \in \mathbb{R}$.

Full **ECH capacities** of 4-manifold (M, ω) such that $\partial M = Y, d\lambda = \omega|_Y$ are numbers $c_k(M, \omega) = \inf\{L \in \mathbb{R} \mid dim(Im[ECH^L(Y, \lambda, 0) \rightarrow ECH(Y, \lambda, 0)]) \geq k\}$

for $k \in \mathbb{N}$.

ECH capacities do not depend on λ .

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

ECH capacities

Symplectic action of α is $\mathcal{A}(\alpha) := \sum_{i} m_i \int_{\alpha_i} \lambda$.

Filtered $ECH^{L}_{*}(Y, \lambda, \Gamma)$ is the homology of the ECH chain subcomplex spanned by generators with action less than $L \in \mathbb{R}$.

Full **ECH capacities** of 4-manifold (M, ω) such that $\partial M = Y, d\lambda = \omega|_Y$ are numbers $c_k(M, \omega) = \inf\{L \in \mathbb{R} \mid dim(Im[ECH^L(Y, \lambda, 0) \rightarrow ECH(Y, \lambda, 0)]) \ge k\}$ for $k \in \mathbb{N}$.

ECH capacities do not depend on λ .

Theorem (M. Hutchings)

If there is symplectic embedding $(M, \omega) \rightarrow (int(M'), \omega')$, then

$$c_k(M,\omega) \leq c_k(M',\omega').$$

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Full ECH capacities of ellipsoids

Let a/b be an irrational number. Symplectic action on generator is

 $\mathcal{A}(\alpha) = ma + nb,$

for $m, n \ge 0$. Dimension of $ECH^{L}(\partial E(a, b), \lambda, 0)$ in $ECH(\partial E(a, b), \lambda, 0)$ is $|\{(m, n) \in \mathbb{N}^{2} \mid ma + nb < L\}|.$

Charles University

・ロト ・ 同ト ・ ヨト ・ ヨト

Charles University

Full ECH capacities of ellipsoids

Let a/b be an irrational number. Symplectic action on generator is

 $\mathcal{A}(\alpha) = ma + nb,$

for $m, n \ge 0$. Dimension of $ECH^{L}(\partial E(a, b), \lambda, 0)$ in $ECH(\partial E(a, b), \lambda, 0)$ is $|\{(m, n) \in \mathbb{N}^{2} \mid ma + nb < L\}|.$

Given $T_{a/b}(m, n)$ triangle constisting of major axes and a line with slope -a/b intersecting point (m, n). Then

$$c_k(E(a,b)) = ma + nb, \quad k = |\{T_{a/b}(m,n) \cap \mathbb{N}^2\}|.$$

Daniel Komárek

Full ECH capacities of ellipsoids

Let a/b be an irrational number. Symplectic action on generator is

 $\mathcal{A}(\alpha) = ma + nb,$

for $m, n \ge 0$. Dimension of $ECH^{L}(\partial E(a, b), \lambda, 0)$ in $ECH(\partial E(a, b), \lambda, 0)$ is $|\{(m, n) \in \mathbb{N}^{2} \mid ma + nb < L\}|.$

Given $T_{a/b}(m, n)$ triangle constisting of major axes and a line with slope -a/b intersecting point (m, n). Then

$$c_k(E(a,b)) = ma + nb, \quad k = |\{T_{a/b}(m,n) \cap \mathbb{N}^2\}|.$$

Example. For a > b:

$$c_1(E(a,b)) = 0, \quad c_2(E(a,b)) = b$$

 $c_3(E(a,b)) = \begin{cases} 2b, & a/b \ge 2, \\ a, & 2 \ge a/b \ge 1, \end{cases}$

Daniel Komárek

イロト イヨト イヨト イヨト

Charles University

Figure: A triangle $T_{a/b}(m, n)$ bounded by two axes and the line with the slope -a/b, intersecting point (m, n).

Daniel Komárek

Pseudoholomorphic curves

Embedded contact homology 000 ECH capacities

Let Ω be a convex, compact domain in $[0,\infty]^2$ with a piecewise smooth boundary. A convex toric domain is

$$X_{\Omega} := \{ (z_1, z_2) \in \mathbb{C}^2 \mid (\pi |z_1|^2, \pi |z_2|^2) \in \Omega \}.$$

Charles University

イロト イポト イヨト イヨト

Charles University

Let Ω be a convex, compact domain in $[0,\infty]^2$ with a piecewise smooth boundary. A convex toric domain is

$$X_{\Omega} := \{(z_1, z_2) \in \mathbb{C}^2 \mid (\pi |z_1|^2, \pi |z_2|^2) \in \Omega\}.$$

It holds

$$c_k(X_\Omega) = \min\{\ell_\Omega(\Lambda) \mid |P_\Lambda \cap \mathbb{Z}^2| = k+1\},$$

where Λ is a convex polygonal path with vertices at lattice points and P_{Λ} the closed region of Λ .

 $\ell_{\Omega}(\Lambda)$ measures length of polygonal path using dual norm to the one that has translate of Ω as an unit ball.

Example. $c_2(E(1, b) \cap E(c, 1)) = R \le 2$, $c_3(E(1, b) \cap E(c, 1)) = 2$ for b, c > 1.

Daniel Komárek

Thank you

Daniel Komárek On Quantitative Aspects of Symplectic Geometry Charles University