Tim Lüders - based on WIP w/ K. Waldorf & L. Otto

University of Vienna

January 23, 2025

#### Motivation

| Graded Lie groupoid                              | Appearence of $Grb(\Gamma,\phi)\ \&\ K^{(G,\mathtt{Q},\psi)}(\Gamma,\phi)$ |
|--------------------------------------------------|----------------------------------------------------------------------------|
| $(M_{dis},1)$                                    | Lifting problems                                                           |
| $(\mathit{BG},\phi)$                             | Wigner's theorem                                                           |
| $(M/\!\!/ G,\phi)$                               | Orientifold sigma models                                                   |
| $(G/\!\!/G,1)$                                   | Chern-Simons theory                                                        |
| $(\Gamma,\phi)$                                  | Topological insulators                                                     |
| $(\Gamma  times_{	au} \mathbb{Z}_2, \phi_{	au})$ | String theory?                                                             |

#### Overview

- Bundle gerbes
- ► Twisted K-theory
- Graded Lie groupoids
- ► Graded-equivariant bundle gerbe K-theory
- ► Applications and special cases

### Bundle gerbes

#### Simplicial Structure of bundle gerbes:

$$\mathcal{G} = \left(egin{array}{cccc} L & \mu & ext{coherence} \ & & & & & & & \ & & & & & & \ & & & & & & \ & & & & & & \ & & & & & & \ & & & & & & \ & & & & & & \ & & & & & & \ & & & & & & \ & & & & & \ & & & & & \ & & & & \ & & & & \ & & & & \ & & & & \ & & & \ & & & \ & & & \ & & & \ & & & \ & & & \ & & & \ & & & \ & & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & \ & \ & \ & & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ &$$

- $\blacktriangleright$   $\pi: Y \rightarrow M$  is a surjective submersion
- ▶ L is a complex line bundle over  $Y^{[2]} := \{(y, y') \in Y^2 | \pi(y) = \pi(y')\}$
- $\mu \colon \operatorname{pr}_{23}^* L \otimes \operatorname{pr}_{12}^* L \to \operatorname{pr}_{13}^* L$  is an associative isomorphism

**Example**:  $Y = M, L = M \times \mathbb{C}, \mu = \text{multiplication}$ . Notation:  $\mathfrak{I}$ 

## Bundle gerbes

#### **1-morphisms of bundle gerbes** $(\zeta, W, \phi)$ : $\mathcal{G}_1 \to \mathcal{G}_2$ :

- ▶  $\zeta: Z \to Y_1 \times_M Y_2$  a surjective submersion
- W a complex vector bundle over Z
- ► an isomorphism of vector bundles

$$\phi \colon \operatorname{pr}_2^* W \otimes L_1 \longrightarrow L_2 \otimes \operatorname{pr}_1^* W$$

over  $Z^{[2]}$  compatible with  $\mu_1$  and  $\mu_2$ .

#### **2-morphisms** $(\rho, \xi)$ : $(\zeta, W, \phi) \rightarrow (\zeta', W', \phi')$ :

- $ho: V \to Z \times_{(Y_1 \times_M Y_2)} Z'$  a surjective submersion
- $\blacktriangleright$   $\xi \colon W \to W'$  a morphism compatible with  $\phi$  and  $\phi'$

#### Bundle gerbes

**Observation**: Bundle gerbes over M form a bicategory Grb(M).

**Observation**: Bundle gerbes categorify vector bundles

$$\mathsf{Hom}_{\mathsf{Grb}(M)}(\mathfrak{I},\mathfrak{I})\cong\mathsf{VectBdl}(M)$$

**Theorem**: Classification of line bundles and bundle gerbes

$$h_0(\mathsf{LineBdI}(M)) \cong H^2(M,\mathbb{Z}), \qquad \quad h_0(\mathsf{Grb}(M)) \cong H^3(M,\mathbb{Z})$$

induced by the *Chern* and *Dixmier-Douady* class, respectively.

**Observation**: Grb(M) is symmetric monoidal, rigid, framed, etc.

**Observation**: The assignment Grb:  $Mfd^{op} \rightarrow BiCat$  is a *sheaf* 

## Twisted K-theory

Fix  $\mathcal{G} \in Grb(M)$ .

**<u>Definition</u>**: The category of  $\mathcal{G}$ -twisted vector bundles over M is

$$\mathsf{VectBdl}^{\mathfrak{G}}(M) := \mathsf{Hom}_{\mathsf{Grb}(M)}(\mathfrak{G}, \mathfrak{I})$$

**Observation**:  $(h_0(VectBdl^g(M)), \oplus)$  is a commutative monoid

**<u>Definition</u>**: The  $\mathcal{G}$ -twisted K-group of M is

$$\mathsf{K}^{\mathbb{G}}(M) := \mathsf{K}(\mathsf{h}_0(\mathsf{VectBdl}^{\mathbb{G}}(M)), \oplus)$$

where the second K is Grothendieck's group completion.

**Observation**:  $K^{\mathfrak{I}}(M) \cong K(M)$ 

## Graded Lie groupoids

<u>Definition</u>: A graded Lie groupoid  $(\Gamma, \phi)$  is a Lie groupoid Γ together with a smooth functor  $\phi: \Gamma \to B\mathbb{Z}_2$ .

#### **Examples**:

- $\blacktriangleright$   $(M_{dis}, 1)$  for M a smooth manifold
- $(BG, \phi)$  for  $(G, \phi)$  a graded Lie group
- $(M/\!\!/ G, \phi)$  for a graded Lie group  $(G, \phi)$  acting on M
- $ightharpoonup (\Gamma, 1)$  for  $\Gamma$  a Lie groupoid
- $\blacktriangleright$  ( $\Gamma \rtimes_{\tau} \mathbb{Z}_2, \phi_{\tau}$ ) for ( $\Gamma, \tau$ ) a Real Lie groupoid

**Question**: What is a bundle gerbe over a Lie groupoid  $\Gamma$ ?

Applying the nerve construction yields a simplicial manifold

$$\Gamma_{\bullet} := \left( \Gamma_0 \stackrel{\partial_0}{\rightleftharpoons}_{\partial_1} \Gamma_1 \stackrel{\partial_0}{\rightleftharpoons}_{\partial_2} \Gamma_2 \stackrel{\partial_0}{\rightleftharpoons}_{\partial_3} \Gamma_3 \dots \right).$$

- Evaluating Grb yields a cosimplicial bicategory Grb(Γ<sub>•</sub>).
- ightharpoonup Taking a homotopy limit yields the bicategory  $Grb(\Gamma)$

**Task**: Spell this out, generalize to graded Lie groupoids

**Question**: What is a bundle gerbe over a graded Lie groupoid  $(\Gamma, \phi)$ ?

**<u>Answer</u>**: A bundle gerbe over  $(\Gamma, \phi)$  consists of:

- ightharpoonup a bundle gerbe  $\mathcal{G}$  over  $\Gamma_0$ ,
- ▶ a 1-isomorphism of bundle gerbes

$$\mathcal{Q}: \partial_0^* \mathcal{G} \to \partial_1^* \mathcal{G}^{\phi}$$

over  $\Gamma_1$ , and

an associative 2-isomorphism of bundle gerbes

$$\psi: \partial_2^* \mathcal{Q} \otimes \partial_0^* \mathcal{Q}^{\partial_2^* \phi} \to \partial_1^* \mathcal{Q}$$

over  $\Gamma_2$ .

Here  $(-)^{\phi}$  denotes complex conjugation iff  $\phi = -1$ 



Bundle gerbes over  $(\Gamma, \phi)$  form a bicategory  $Grb(\Gamma, \phi)$ .

Fix  $(\mathfrak{G}, \mathfrak{Q}, \psi) \in \mathsf{Grb}(\Gamma, \phi)$ .

**<u>Definition</u>**: The category of  $(\mathfrak{G}, \mathfrak{Q}, \psi)$ -twisted vector bundles over  $(\Gamma, \phi)$  is

$$\mathsf{VectBdl}^{(\mathfrak{G},\mathfrak{Q},\psi)}(\mathsf{\Gamma},\phi) := \mathsf{Hom}_{\mathsf{Grb}(\mathsf{\Gamma},\phi)}((\mathfrak{G},\mathfrak{Q},\psi),(\mathfrak{I},\mathsf{id},\mathsf{id}))$$

**Observation**:  $(h_0(\operatorname{VectBdl}^{(\mathfrak{G},\mathfrak{Q},\psi)}(\Gamma,\phi)),\oplus)$  is a commutative monoid

**<u>Definition</u>**: The  $(\mathfrak{G}, \mathfrak{Q}, \psi)$ -twisted K-group of  $(\Gamma, \phi)$  is

$$\mathsf{K}^{(\mathfrak{G},\mathfrak{Q},\psi)}(\Gamma,\phi) := \mathsf{K}(\mathsf{h}_0(\mathsf{VectBdl}^{(\mathfrak{G},\mathfrak{Q},\psi)}(\Gamma,\phi),\oplus)$$

where the second K is Grothendieck's group completion.

# Applications & Special cases

| Graded Lie groupoid                              | Appearence of $Grb(\Gamma,\phi)$ & $K^{(G,Q,\psi)}(\Gamma,\phi)$ |
|--------------------------------------------------|------------------------------------------------------------------|
| $(M_{dis},1)$                                    | Lifting problems                                                 |
| $(BG,\phi)$                                      | Wigner's theorem                                                 |
| $(M/\!\!/ G,\phi)$                               | Orientifold sigma models                                         |
| $(G/\!\!/ G,1)$                                  | Chern-Simons theory                                              |
| $(\Gamma,\phi)$                                  | Topological insulators                                           |
| $(\Gamma  times_{	au} \mathbb{Z}_2, \phi_{	au})$ | String theory?                                                   |