Courant Algebroids

Marián Lukáč

Supervisor: Eugenia Boffo, PhD.

Departament of Theoretical Physics Faculty of Mathematics, Physics and Informatics Comenius University, Bratislava

January 24, 2025

Outline

- Why?
- What?
- How?
- Where?

Motivation

Algebroids generalize the standard differential geometry and the notion of linear algebras.

Motivation

Algebroids generalize the standard differential geometry and the notion of linear algebras.

Certain Courant algebroid provides a geometrical playground for the physical theory of supergravity.

• Vector bundle:

$$(E,\pi,M)$$

• Vector bundle:

$$(E,\pi,M)$$

• Dual (of a) vector bundle:

$$(E^*,\pi',M)$$

• Vector bundle:

$$(E,\pi,M)$$

• Dual (of a) vector bundle:

$$(E^*,\pi',M)$$

Module of smooth sections of a vector bundle:

$$\Gamma(E)\cong \mathscr{T}_0^1(M;E)$$

• Vector bundle:

$$(E,\pi,M)$$

• Dual (of a) vector bundle:

$$(E^*,\pi',M)$$

Module of smooth sections of a vector bundle:

$$\Gamma(E)\cong \mathscr{T}_0^1(M;E)$$

Module of smooth section of a dual vector bundle:

$$\Gamma(E^*) \cong \mathscr{T}_1^0(M;E)$$

Marián Lukáč

Vector bundle:

$$(E,\pi,M)$$

• Dual (of a) vector bundle:

$$(E^*,\pi',M)$$

Module of smooth sections of a vector bundle:

$$\Gamma(E) \cong \mathcal{T}_0^1(M; E)$$

Module of smooth section of a dual vector bundle:

$$\Gamma(E^*)\cong \mathscr{T}_1^0(M;E)$$

• Module of generalized (p,q)—tensors on M:

Note: Whenever our vector bundle turns out to be the tangent bundle, we shall simplify the notation such as in the following:

$$\mathcal{T}_q^p(M;TM) =: \mathcal{T}_q^p(M)$$

Leibniz Algebroids I

Leibniz Algebra

Leibniz algebra L is a vector space with a bilinear mapping:

$$[\cdot,\cdot]:L\times L\to L$$

such that the Leibniz identity holds, that is:

$$[a, [b, c]] = [[a, b], c] + [b, [a, c]]$$

for all $a, b, c \in L$.

Leibniz Algebroids II

Leibniz Algebroid

Leibniz algebroid is a vector bundle (E, π, M) along with a vector bundle homomorphism $\rho: E \to TM$ and a bilinear mapping:

$$[\cdot,\cdot]_E:\Gamma(E)\times\Gamma(E)\to\Gamma(E)$$

such that the Leibniz identity and Leibniz rule in the second input hold, that is:

$$[e, [e', e'']_E]_E = [[e, e']_E, e'']_E + [e', [e, e'']_E]_E,$$
$$[e, fe']_E = f[e, e']_E + (\rho(e) \cdot f)e'.$$

The map ρ is called the anchor of Leibniz algebroid.

Leibniz Algebroid III

Generalized Lie Derivative

Generalized Lie derivative \mathcal{L}^E along the section e of E is linear operator on the graded algebra of generalized tensor fields on M defined in the following way:

$$\mathcal{L}_{e}^{E} f = \rho(e) \cdot f, \ \forall f \in C^{\infty}(M),$$

$$\mathcal{L}_{e}^{E} e' = [e, e']_{E}, \ \forall e' \in \Gamma(E),$$

$$\langle \mathcal{L}_{e}^{E} \alpha, e' \rangle = \rho(e) \cdot \langle \alpha, e' \rangle - \langle \alpha, [e, e']_{E} \rangle, \ \forall \alpha \in \Gamma(E^{*}), e' \in \Gamma(E),$$

$$[\mathcal{L}_{e}^{E}\tau](e_{1},\ldots,e_{q};\alpha_{1},\ldots,\alpha_{p}) = \rho(e)\tau(e_{1},\ldots,e_{q};\alpha_{1},\ldots,\alpha_{p})$$
$$-\tau(\mathcal{L}_{e}^{E}e_{1},\ldots,e_{q};\alpha_{1},\ldots,\alpha_{p}) - \ldots - \tau(e_{1},\ldots,e_{q};\alpha_{1},\ldots,\mathcal{L}_{e}^{E}\alpha_{p})$$
$$\forall e_{1},\ldots,e_{q} \in \Gamma(E),\alpha_{1},\ldots,\alpha_{p} \in \Gamma(E^{*}),\tau \in \mathcal{T}_{q}^{p}(M;E)$$

(ロ) (部) (注) (注) 注 りなる

Leibniz Algebroids IV

Examples:

- $(TM \xrightarrow{\pi} M, id_{TM}, [\cdot, \cdot])$
- $(L \xrightarrow{\pi} m, 0, [\cdot, \cdot])$
- $(TM \oplus \Lambda^p T^*M \xrightarrow{\pi} M, pr_1, [\cdot, \cdot]_D)$, with the Dorfman bracket $[\cdot, \cdot]_D$ defined as:

$$[X + \xi, Y + \eta]_D := [X, Y] + \mathcal{L}_X \eta - i_Y d\xi$$

$$\forall X, Y \in \mathfrak{X}(M) \text{ and } \xi, \eta \in \Omega^p(M)$$

(Lie) Grupoid I

Grupoid

Grupoid consists of two sets G and M with two maps $\alpha, \beta: G \to M$ called source and target, the so-called object inclusion map $1_M: M \to G$ and a partial multiplication function in G such that the following holds:

- $\alpha(hg) = \alpha(g), \ \beta(hg) = \beta(h),$
- j(hg) = (jh)g,
- $\bullet \ \alpha(1_x) = \beta(1_x) = x,$
- $g1_{\alpha(g)} = g$, $1_{\beta(g)}g = g$

 $\forall j,h,g\in G$ and $x\in M$ whenever the partial multiplication between such elements is defined. Each element $g\in G$ also has its two-sided inverse $g^{-1}\in G$.

(Lie) Grupoid II

Note: The definition of grupoid can be smoothly rephrased using category theoretical language by simply stating that a grupoid is a category where each morphism is isomorphism.

(Lie) Grupoid III

Lie Grupoid

Lie grupoid (G, M) involves besides the standard grupoid data also a smooth manifold structure on both G and M.

Lie Algebroids I

Lie Algebra

Lie algebra is a vector space ${\mathscr G}$ equipped with a bilinear mapping:

$$[\cdot,\cdot]:\mathscr{G}\times\mathscr{G}\to\mathscr{G}$$

such that the Jacobi identity holds and the mapping alternates, that is:

$$[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0,$$

 $[x, x] = 0,$

$$\forall x, y, z \in \mathscr{G}$$
.

Lie Algebroids II

Lie Algebroid

Lie algebroid is a Leibniz algebroid $(L \xrightarrow{\pi} M, I, [\cdot, \cdot]_L)$, for which the Leibniz bracket alternates.

Note: Another way to define Lie algebroid is to say that it is a vector bundle over the set of units of a Lie grupoid.

Lie Algebroids III

Generalized Differential

In the Lie algebroid settings, there is an operator $d_L: \Omega^{\bullet}(M; L) \to \Omega^{\bullet+1}(M; L)$ on the generalized exterior algebra defined as follows:

$$(d_L\omega)(e_0, e_1, \dots, e_p) := \sum_{i=0}^p (-1)^i I(e_i)\omega(e_0, \dots, \hat{e_i}, \dots, e_p) + \\ + \sum_{i < j} (-1)^{i+j} \omega([e_i, e_j]_L, e_0, \dots, \hat{e_i}, \dots, \hat{e_j}, \dots, e_p)$$

$$\forall \omega \in \Omega^p(M; L) \text{ and } e_0, e_1, \dots, e_p \in \Gamma(L).$$

Note: The generalized differential encodes the entire Lie algebroid information.

Lie Algebroids IV

Examples:

- $(TM \xrightarrow{\pi} M, id_{TM}, [\cdot, \cdot]),$
- $(\mathscr{G} \xrightarrow{\pi} m, 0, [\cdot, \cdot]),$
- $(T^*M \xrightarrow{\pi'} M, \Pi, [\cdot, \cdot]_{\Pi})$ with:

$$\Pi(\alpha) \equiv \Pi(\alpha, \cdot)$$
 and $[\alpha, \beta]_{\Pi} = \mathscr{L}_{\Pi(\alpha, \cdot)} \beta - i_{\Pi(\beta, \cdot)} d\alpha$

where $\Pi \in \mathfrak{X}^2(M)$.

Courant Algebroids I

Fiber-wise Metric

Fiber-wise metric on a vector bundle is a symmetric bilinear non-degenerate form $\langle \cdot, \cdot \rangle_E : \Gamma(E) \times \Gamma(E) \to C^{\infty}(M)$.

Courant Algebroids I

Fiber-wise Metric

Fiber-wise metric on a vector bundle is a symmetric bilinear non-degenerate form $\langle \cdot, \cdot \rangle_E : \Gamma(E) \times \Gamma(E) \to C^{\infty}(M)$.

Courant Algebroid

Courant algebroid is a pair of Leibniz algebroid and a fiber-wise metric ($E \stackrel{\pi}{\to} M, \rho, [\cdot, \cdot]_E, \langle \cdot, \cdot \rangle_E$), such that:

$$\begin{split} \rho(e) \cdot \langle e', e'' \rangle_E &= \langle [e, e']_E, e'' \rangle_E + \langle e', [e, e'']_E \rangle_E, \\ \langle [e, e]_E, e' \rangle_E &= \frac{1}{2} \rho(e') \cdot \langle e, e \rangle_E, \end{split}$$

 $\forall e, e', e'' \in \Gamma(E)$.

- 4 ロ ト 4 園 ト 4 恵 ト 4 恵 ト 9 Q G

Courant Algebroids II

Note: Equivalently, we have $\mathscr{L}_e^E g_E = 0$ and $[e, e]_E = \frac{1}{2} \mathscr{D} \langle e, e \rangle_E$ for each $e \in \Gamma(E)$ where g_E is the tensor corresponding to the fiber-wise metric and $\mathscr{D} = g_E^{-1} \circ \rho^T \circ d : C^{\infty}(M) \to \Gamma(E)$.

Courant Algebroids III

Examples:

- $(\mathscr{G} \xrightarrow{\pi} m, [\cdot, \cdot], \langle \cdot, \cdot \rangle)$, for \mathscr{G} a quadratic Lie algebra
- $(TM \oplus T^*M \xrightarrow{\pi} M, pr_1, [\cdot, \cdot]_D, \langle \cdot, \cdot \rangle)$, for $[\cdot, \cdot]_D$ a Dorfman bracket and $\langle \cdot, \cdot \rangle$ a canonical pairing,
- $(TM \oplus T^*M \xrightarrow{\pi} M, pr_1, [\cdot, \cdot]_D^H, \langle \cdot, \cdot \rangle)$, for $[\cdot, \cdot]_D^H$ an H-twisted Dorfman bracket defined as $[X + \xi, Y + \eta]_D^H := [X + \xi, Y + \eta]_D H(X, Y, \cdot)$ where $H \in \Omega^3(M)$

Connections I

Courant Algebroid Connection

Courant algebroid connection is a map $\nabla: \Gamma(E) \times \Gamma(E) \to \Gamma(E)$ for which $\nabla(fe,e') = f\nabla(e,e')$ and $\nabla(e,fe') = f\nabla(e,e') + (\rho(e)\cdot f)e'$ for each $e,e' \in \Gamma(E)$ and ∇ is compatible with the Courant algebroid metric.

Connections II

Example:

For Courant algebroid $(TM \oplus T^*M \xrightarrow{\pi} M, \rho, [\cdot, \cdot]_D, \langle \cdot, \cdot \rangle_E)$ we may define a Courant algebroid connection ∇ in the following way:

$$\langle \nabla_{\mathsf{a}} b, c \rangle_{\mathsf{E}} := \langle [\mathsf{a}, b]_{\mathsf{D}} - [\mathsf{a}, b]_{\mathsf{E}}, c \rangle_{\mathsf{E}}$$

for $a,b,c\in\Gamma(E)$ and $[\cdot,\cdot]_E:\Gamma(E)\times\Gamma(E)\to\Gamma(E)$ an arbitrary skew-symmetric bracket with Leibniz rule.

(Here *E* is a shorthand notation for $TM \oplus T^*M$.)

Conclusion

 Mathematical framework of algebroids is the most natural generalization of differential geometry swappping tangent bundle for an arbitrary vector bundle.

Conclusion

- Mathematical framework of algebroids is the most natural generalization of differential geometry swappping tangent bundle for an arbitrary vector bundle.
- This formalism also allows for the generalization of linear algebras.

Conclusion

- Mathematical framework of algebroids is the most natural generalization of differential geometry swappping tangent bundle for an arbitrary vector bundle.
- This formalism also allows for the generalization of linear algebras.
- There is a theorem of Roytenberg and Ševera giving us a one-to-one correspondence between Courant algebroids and Poisson manifolds with a nilpotent vector field on them.

Courant Algebroids

"My name's Jeff." - Jeff

Bibliography

Vysoký, J. Geometry of Membrane Sigma Models. Cambridge University Press, 2015

- Fecko, M. Differential Geometry and Lie Groups for Physicists. Cambridge University Press, 2006.
- Mackenzie, K. General Theory of Lie Grupoids and Lie Algebroids. Cambridge University Press, 2005.