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Motivation

Algebroids generalize the standard differential geometry and the
notion of linear algebras.
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Motivation

Algebroids generalize the standard differential geometry and the
notion of linear algebras.

Certain Courant algebroid provides a geometrical playground for the
physical theory of supergravity.

Marian Lukaé

Courant Algebroids



Notation |

® \ector bundle:
(E,m, M)

Courant Algebroids



Notation |

® \ector bundle:
(E,m, M)

® Dual (of a) vector bundle:

(E*, 7', M)

Marian Lukaé

Courant Algebroids



Notation |

® \ector bundle:
(E,m, M)

® Dual (of a) vector bundle:

(E*, 7', M)

® Module of smooth sections of a vector bundle:

M(E) = 7 (M; E)

Marian Lukaé

Courant Algebroids



Notation |

® \ector bundle:
(E,m, M)

® Dual (of a) vector bundle:

(E*, 7', M)

® Module of smooth sections of a vector bundle:

M(E) = 7 (M; E)

® Module of smooth section of a dual vector bundle:

M(E*) = 7,°(M; E)

Marian Lukaé

Courant Algebroids



Notation |

® \ector bundle:
(E,m, M)

® Dual (of a) vector bundle:

(E*, 7', M)

® Module of smooth sections of a vector bundle:

M(E) = 7 (M; E)

® Module of smooth section of a dual vector bundle:

M(E*) = 7,°(M; E)

® Module of generalized (p, g)—tensors on M:
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Notation |l

Note: Whenever our vector bundle turns out to be the tangent
bundle, we shall simplify the notation such as in the following:

IL(M; TM) =: TP (M)
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Leibniz Algebroids |

Leibniz Algebra

Leibniz algebra L is a vector space with a bilinear mapping:
[]:LxL—L
such that the Leibniz identity holds, that is:
[a,[b, c]] = [[a, b], ] + [b, [a, c]]

forall a,b,c e L.

Marian Lukaé

Courant Algebroids



Leibniz Algebroids Il

Leibniz Algebroid

Leibniz algebroid is a vector bundle (E, 7, M) along with a vector
bundle homomorphism p : E — TM and a bilinear mapping:

[]e - T(E) x T(E) — T (E)

such that the Leibniz identity and Leibniz rule in the second input
hold, that is:

[ea [e,7 e,/]E]E = [[ev e/]Ea e,/]E + [e/, [e, e,/]E]E,
e, /] = fle. ] + (p(e) - F)e'.

The map p is called the anchor of Leibniz algebroid.
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Leibniz Algebroid Il

Generalized Lie Derivative

Generalized Lie derivative ZF along the section e of E is linear
operator on the graded algebra of generalized tensor fields on M
defined in the following way:

ZEf=ple)-f, Vf € C®(M),
ZEe = e, €g, Ve e T(E),

(ZEa, ey = p(e) - (o, €') — (a,[e, €]g), Ya e T(E*), e € T(E),

[ZET)(e1,. .. eq a1, .., ap) = ple)T(er, ..., eqa1,...,ap)
—r(ZEer,...eqia1,.. . ap) — ... —T(er,...,eqa1,...,LEa,)
Ver,...,eq € [(E),a1,...,ap €T(E"), 7 € TS (M; E)
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Leibniz Algebroids IV

Examples:
o (TM 5 M, idrm, [-,-])
e (L5 m,0,[,]
o (TM®ANPT*M 5 M, pry,[-,"|p), with the Dorfman bracket
[, ]p defined as:
X+&Y +n]p:=[X,Y]+%xn— iyd¢

VX, Y € X(M) and ¢, € QP(M)
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(Lie) Grupoid |

Grupoid

Grupoid consists of two sets G and M with two maps

o, : G — M called source and target, the so-called object
inclusion map 1y, : M — G and a partial multiplication function in
G such that the following holds:

* a(hg) = a(g), H(hg) = B(h),
* j(hg) = (h)g,
* o(ly) = B(1x) = x,
* glae) =8 lpe)g=¢
Vj,h,g € G and x € M whenever the partial multiplication

between such elements is defined. Each element g € G also has its
two-sided inverse g~ € G.
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(Lie) Grupoid Il

Note: The definition of grupoid can be smoothly rephrased using
category theoretical language by simply stating that a grupoid is a
category where each morphism is isomorphism.
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(Lie) Grupoid IlI

Lie grupoid (G, M) involves besides the standard grupoid data also
a smooth manifold structure on both G and M.
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Lie Algebroids |

Lie Algebra

Lie algebra is a vector space & equipped with a bilinear mapping:

[,]:¥¢x€—>%

such that the Jacobi identity holds and the mapping alternates,
that is:
[x, Iy, 2l] + Iy, [z, x]] + [z, [x, ¥]] = O,

[x,x] =0,
Vx,y,z€ G.
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Lie Algebroids I

Lie Algebroid

Lie algebroid is a Leibniz algebroid (L = M, I,[-,-],), for which the
Leibniz bracket alternates.

Note: Another way to define Lie algebroid is to say that it is a
vector bundle over the set of units of a Lie grupoid.
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Lie Algebroids Ill

Generalized Differential

In the Lie algebroid settings, there is an operator
dp : Q*(M; L) — Q*F1(M; L) on the generalized exterior algebra
defined as follows:

P
(diw)(eo,e1,. .., €)=Y (~1)I(en)w(eo, .-, &, ..., )+
i=0
—i—Z 1) w([er, €L, €05+ 6y €fyenvsep)

i<j

Vw € QP(M; L) and g, e1,...,e, € T(L).
Note: The generalized differential encodes the entire Lie algebroid
information.
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Lie Algebroids IV

Examples:
* (TM 5 M, id7m,[,-]).
e (¢ 5 mo,l[,],
o (T*M ™ M, M, [, ]n) with:
n(a) = n(a, ) and [am@]ﬂ - gﬂ(ay.)ﬁ - in(ﬂ}.)da

where I € X2(M).
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Courant Algebroids |

Fiber-wise Metric

Fiber-wise metric on a vector bundle is a symmetric bilinear
non-degenerate form (-,-)g : [(E) X ['(E) — C*(M).
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Courant Algebroids |

Fiber-wise Metric

Fiber-wise metric on a vector bundle is a symmetric bilinear
non-degenerate form (-,-)g : [(E) X ['(E) — C*(M).

Courant Algebroid

Courant algebroid is a pair of Leibniz algebroid and a fiber-wise
metric (E 5 M, p,[-,"]e, (-,-)€), such that:

p(e) : <e/7 e,/>E = <[e7 e/]Ea e//>E + <e/7 [67 e”]E>E7

1
<[e’ e]Ea e/>E = Ep(e/) : <e7 e>E7
Ve, e, e’ e T(E).
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Courant Algebroids I

Note: Equivalently, we have .Zfgr = 0 and [e, €]l = 3Z(e, e)
for each e € I'(E) where gg is the tensor corresponding to the
fiber-wise metric and 2 = gz o pT o d : C(M) — T(E).
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Courant Algebroids Il

Examples:

e (¢ 5 m,[,],(,-), for € a quadratic Lie algebra

* (TM® T*M = M, pr, [, -]p, (), for [-,-]p a Dorfman
bracket and (-, -) a canonical pairing,

* (TMa& T*M 5 M, pri, [-,-]8, (-, ), for [,-]5 an H—twisted
Dorfman bracket defined as
X +& Y +nlf = [X+&Y +ilp— H(X,Y,) where
H e Q3(Mm)
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Connections |

Courant Algebroid Connection

Courant algebroid connection is a map V : T(E) x I'(E) — I'(E)
for which V(fe, e') = fV(e, €') and

Ve, fe') = fV(e, &)+ (p(e) - f)e for each e, e’ € [(E) and V is
compatible with the Courant algebroid metric.
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Connections |l

Example:
For Courant algebroid (TM @ T*M 5 M, p,[-, b, (-, -)g) we may
define a Courant algebroid connection V in the following way:

(Vab, C>E = ([a, b]D — [a, b]E, C>E
for a,b,c € T(E) and [-,-]g : T(E) x [(E) — T'(E) an arbitrary

skew-symmetric bracket with Leibniz rule.
(Here E is a shorthand notation for TM & T*M.)
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Conclusion

e Mathematical framework of algebroids is the most natural
generalization of differential geometry swappping tangent
bundle for an arbitrary vector bundle.
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Conclusion

e Mathematical framework of algebroids is the most natural
generalization of differential geometry swappping tangent
bundle for an arbitrary vector bundle.

® This formalism also allows for the generalization of linear
algebras.

® There is a theorem of Roytenberg and Severa giving us a
one-to-one correspondence between Courant algebroids and
Poisson manifolds with a nilpotent vector field on them.
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“My name's Jeff.” - Jeff
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