Quantum exterior algebras and torsion free bimodule connections

Réamonn Ó Buachalla

Mathematical Institute, Charles University in Prague

Srní 2025

(Joint work with Alessandro Carotenuto and Junaid Razzaq)

1 Introduction

• What is noncommutative differential geometry?

1 Introduction

• What is noncommutative differential geometry?

• The study of non-commutative algebras with algebraic properties similar to those of $C^{\infty}(M)$, for M a smooth manifold!

1 Introduction

What is noncommutative differential geometry?

- The study of non-commutative algebras with algebraic properties similar to those of $C^{\infty}(M)$, for M a smooth manifold!
- So how can we produce an analogue of vector fields and one-forms for a noncommutative algebra?

2 Differential Calculi

Definition

A first-order differential calculus over an algebra B is a B-bimodule $\Omega^1(B)$ with a linear map

$$d: B \rightarrow \Omega^1(B)$$

such that d(ab) = d(a)b + adb, for all $a, b \in B$, and the multiplication map $B \otimes dB \to \Omega^1(B)$ is surjective.

 What about higher forms? That is, can we extend to get a differential graded algebra:

$$B \to \Omega^1(B) \to \Omega^2(B) \to \cdots$$

such that $d^2 = 0$ and d satisfies a graded Leibniz rule.

 What about higher forms? That is, can we extend to get a differential graded algebra:

$$B \to \Omega^1(B) \to \Omega^2(B) \to \cdots$$

such that $d^2 = 0$ and d satisfies a graded Leibniz rule.

• In general, taking an exterior algebra is not a good idea.

Take the tensor algebra

$$\mathcal{T}(\Omega^1(B)) = \bigoplus_{\mathbb{Z}_{\geq 0}} (\Omega^1(B))^{\otimes k}.$$

Take the tensor algebra

$$\mathcal{T}(\Omega^1(B)) = \bigoplus_{\mathbb{Z}_{>0}} (\Omega^1(B))^{\otimes k}.$$

 Can we find a B-sub-bimodule N⁽²⁾ ⊆ Ω¹(B) ⊗ Ω¹(B), such that the quotient

$$\mathcal{T}(\Omega^1(B))/\langle N^{(2)}\rangle$$

has the (necessarily unique) structure of a differential graded algebra d extending $d: B \to \Omega^1(B)$?

• The answer is yes! Moreover, there is "maximal" way to do this!

- The answer is yes! Moreover, there is "maximal" way to do this!
- There exists a unique $N^{(2)}$ such that for any other extension to a dga Γ^{\bullet} , we have the commutative diagram

- The answer is yes! Moreover, there is "maximal" way to do this!
- There exists a unique $N^{(2)}$ such that for any other extension to a dga Γ^{\bullet} , we have the commutative diagram

• We call this dga $\Omega^{\bullet}(B)$ the maximal prolongation of $\Omega^{1}(B)$.

- The answer is yes! Moreover, there is "maximal" way to do this!
- There exists a unique $N^{(2)}$ such that for any other extension to a dga Γ^{\bullet} , we have the commutative diagram

• We call this dga $\Omega^{\bullet}(B)$ the maximal prolongation of $\Omega^{1}(B)$.

Example

For the space of one forms $\Omega^1(B)$, its maximal prolongation is the usual exterior algebra construction of the de Rham complex.

3: Torsion-Free Bimodule Connections

Definition

For a left *B*-module \mathcal{F} , a *connection* is a linear map

$$\nabla: \mathcal{F} \to \Omega^1(B) \otimes_B \mathcal{F}$$
 such that

$$\nabla(bf) = db \otimes f + b\nabla(f)$$
, for all $b \in B$, $f \in \mathcal{F}$.

3: Torsion-Free Bimodule Connections

Definition

For a left *B*-module \mathcal{F} , a *connection* is a linear map $\nabla: \mathcal{F} \to \Omega^1(B) \otimes_B \mathcal{F}$ such that

$$\nabla(bf) = db \otimes f + b\nabla(f),$$
 for all $b \in B$, $f \in \mathcal{F}$.

Definition

A connection ∇ for \mathcal{F} is said to be a *bimodule connection* if

$$\nabla(fb) = \nabla(f)b + \sigma(f \otimes db),$$
 for all $b \in B$, $f \in \mathcal{F}$,

for a (necessarily unique) bimodule map

$$\sigma: \mathcal{F} \otimes \Omega^{1}(B) \to \Omega^{1}(B) \otimes_{B} \mathcal{F}.$$

Definition

A connection is torsion-free if

$$\text{Tor}:=\wedge\circ\nabla-d=0,$$

Definition

A connection is torsion-free if

Tor :=
$$\wedge \circ \nabla - d = 0$$
,

that is, such that the following diagram commutes

Theorem

(A. Carotenuto, RÓB, J. Razzaq) For any torsion-free bimodule connection $\nabla:\Omega^1(B)\to\Omega^1(B)\otimes_B\Omega^1(B)$, with bimodule map σ , it holds that $N^{(2)}$ is generated as a B-bimodule by $G_1\cup G_2$, where

$$egin{aligned} G_1 &:= \left\{ \omega \otimes
u + \sigma(\omega \otimes
u) \, | \, \omega, \,
u \in \Omega^1(B)
ight\} \ G_2 &:= \left\{
abla (\mathrm{d} b) \, | \, b \in B
ight\} \end{aligned}$$

4: Quantum Homogeneous Spaces

Definition

Let A be a Hopf algebra. A *quantum homogeneous space* is a coideal subalgebra $B \subseteq A$ such that A is faithfully flat as a right B-module.

4: Quantum Homogeneous Spaces

Definition

Let A be a Hopf algebra. A *quantum homogeneous space* is a coideal subalgebra $B \subseteq A$ such that A is faithfully flat as a right B-module.

Proposition

• Let $\Omega^1(B)$ be a first-order differential calculus over B endowed with a "compatible" left A-coaction. Denote $B^+ = \ker(\varepsilon_A) \cap B$, and assume that $\Omega^1(B)B^+ = B^+\Omega^1(B)$.

Proposition

- Let $\Omega^1(B)$ be a first-order differential calculus over B endowed with a "compatible" left A-coaction. Denote $B^+ = \ker(\varepsilon_A) \cap B$, and assume that $\Omega^1(B)B^+ = B^+\Omega^1(B)$.
- Then for any equivariant bimodule connection, with associated bimodule map σ , it holds that

$$\sigma(\mathrm{d}b\otimes\mathrm{d}c)=\mathrm{d}(b_{(3)}cS(b_{(2)})\otimes\mathrm{d}b_{(1)},\quad \textit{for all }b,c\in B.$$

Proposition

- Let $\Omega^1(B)$ be a first-order differential calculus over B endowed with a "compatible" left A-coaction. Denote $B^+ = \ker(\varepsilon_A) \cap B$, and assume that $\Omega^1(B)B^+ = B^+\Omega^1(B)$.
- Then for any equivariant bimodule connection, with associated bimodule map σ , it holds that

$$\sigma(\mathrm{d} b\otimes \mathrm{d} c)=\mathrm{d}(b_{(3)}cS(b_{(2)})\otimes \mathrm{d} b_{(1)},\quad \textit{for all } b,c\in B.$$

• Note: σ is independent of the choice of connection.

5: Drinfeld-Jimbo Quantum Flag Manifolds

 Let g be a complex semisimple Lie algebra, and G the corresponding connected, simply connected, compact Lie group.

5: Drinfeld-Jimbo Quantum Flag Manifolds

- Let g be a complex semisimple Lie algebra, and G the corresponding connected, simply connected, compact Lie group.
- For any $q \in \mathbb{R}_{>0}$, the Drinfeld–Jimbo quantum groups are a dual pair

$$\mathcal{O}_q(G) \times U_q(\mathfrak{g}) \to \mathbb{C},$$

of (co)quasitriangular Hopf algebras.

5: Drinfeld-Jimbo Quantum Flag Manifolds

- Let g be a complex semisimple Lie algebra, and G the corresponding connected, simply connected, compact Lie group.
- For any $q \in \mathbb{R}_{>0}$, the Drinfeld–Jimbo quantum groups are a dual pair

$$\mathcal{O}_q(G) \times U_q(\mathfrak{g}) \to \mathbb{C},$$

of (co)quasitriangular Hopf algebras.

• When q = 1, we recover the algebra of representable (polynomial) functions $\mathcal{O}(G)$, and the universal enveloping algebra $U(\mathfrak{g})$.

 For S a subset of simple roots, we have the quantum Levi subalgebra

$$U_q(\mathfrak{l}_S) := \langle K_i, E_j, F_j | i = 1, \ldots, r; j \in S \rangle$$

 For S a subset of simple roots, we have the quantum Levi subalgebra

$$U_q(\mathfrak{l}_{\mathcal{S}}) := \langle K_i, E_j, F_j | i = 1, \dots, r; j \in \mathcal{S} \rangle$$

Definition

For S a subset of simple roots of \mathfrak{g} , the corresponding *quantum flag manifold* is the invariant subspace

$$\mathcal{O}_{q}(G/L_{S}) := \mathcal{O}_{q}(G)^{U_{q}(\mathfrak{l}_{S})}$$

$$= \{g \in \mathcal{O}_{q}(G) | g \triangleleft X = \varepsilon(X)g, \forall X \in U_{q}(\mathfrak{l}_{S})\}.$$

Compact Quantum Hermitian Symmetric Spaces

Theorem (Heckenberger, Kolb '06)

For each compact quantum Hermitian symmetric flag manifold $\mathcal{O}_q(G/L_S)$, there exist precisely two irreducible $U_q(\mathfrak{g})$ -covariant first-order differential calculi for $\Omega_q^{\bullet}(G/L)$:

$$\Omega_q^1(G/L_S) := \Omega_q^{(1,0)} \oplus \Omega_q^{(0,1)}.$$

Theorem (Heckenberger, Kolb '06)

For each compact quantum Hermitian symmetric flag manifold $\mathcal{O}_q(G/L_S)$, there exist precisely two irreducible $U_q(\mathfrak{g})$ -covariant first-order differential calculi for $\Omega_q^{\bullet}(G/L)$:

$$\Omega_q^1(G/L_S) := \Omega_q^{(1,0)} \oplus \Omega_q^{(0,1)}.$$

 In the q = 1 limit these correspond to the decomposition of complexified 1-forms into its holomorphic and anti-holomorphic summands"

$$\Omega^1(\textit{G}/\textit{L}_{\textit{S}}) \simeq \Omega^{(1,0)} \oplus \Omega^{(0,1)}.$$

• How to describe the maximal prolongation of $\Omega_{\sigma}^{1}(G/L_{S})$?

To do this we need some notation: With respect to the index set $J := \{1, \dots, \dim(V_{\varpi_s})\}$:

$$\widehat{R}_{V_{\varpi_s},V_{\varpi_s}}(v_i \otimes v_j) =: \sum_{k,l \in J} \widehat{R}_{ij}^{kl} v_k \otimes v_l,$$

$$\widehat{R}_{V_{-w_0(\varpi_s)},V_{\varpi_s}}(f_i \otimes v_j) =: \sum_{k,l \in J} \widehat{R}_{ij}^{-kl} v_k \otimes f_l,$$

$$\widehat{R}_{V_{\varpi_s},V_{-w_0(\varpi_s)}}(v_i \otimes f_j) =: \sum_{k,l \in J} \widehat{R}_{ij}^{-kl} f_k \otimes v_l,$$

$$\widehat{R}_{V_{-w_0(\varpi_s)},V_{-w_0(\varpi_s)}}(f_i \otimes f_j) =: \sum_{k,l \in J} \widecheck{R}_{ij}^{kl} f_k \otimes f_l.$$

Moreover, we denote by \widehat{R}^- , \widehat{R} , \widehat{R} , and \widecheck{R}^- , the inverse matrices of \widehat{R} , \widehat{R}^- , \widehat{R}^- , and \widecheck{R} respectively.

The subbimodule $N^{(2)}$ can now be given in terms of the standard matrix generator $z := (z_{ij})_{(ij)}$:

First are the holomorphic relations

$$\widehat{Q}_{12} \acute{R}_{23} \partial \mathbf{z} \wedge \partial \mathbf{z} = 0, \qquad \qquad \check{P}_{34} \acute{R}_{23} \partial \mathbf{z} \wedge \partial \mathbf{z} = 0, \qquad (1)$$

where we have used leg notation, and have denoted

$$\widehat{Q}:=\widehat{R}+q^{(\varpi_s,\varpi_s)-(\alpha_x,\alpha_x)}\mathrm{id},\qquad \check{P}:=\check{R}-q^{(\varpi_s,\varpi_s)}\mathrm{id}.$$

Second are the anti-holomorphic relations

$$\widehat{P}_{12} \not R_{23} \overline{\partial} \mathbf{z} \wedge \overline{\partial} \mathbf{z} = 0, \qquad \qquad \check{Q}_{34} \not R_{23} \overline{\partial} \mathbf{z} \wedge \overline{\partial} \mathbf{z} = 0, \qquad (2)$$

where we have again used leg notation, and have denoted

$$\widehat{P} := \widehat{R} - q^{(\varpi_s, \varpi_s)} \mathrm{id}, \qquad \check{Q} := \check{R} + q^{(\varpi_s, \varpi_s) - (\alpha_x, \alpha_x)} \mathrm{id}.$$

Finally, we have the cross-relations

$$egin{aligned} \overline{\partial}\mathbf{z}\wedge\partial\mathbf{z} &= -\,q^{-(lpha_{_{\! X}},lpha_{_{\! X}})}\,T_{1234}^{-}\partial\mathbf{z}\wedge\overline{\partial}\mathbf{z} \ &+ q^{(arpi_{_{\! S}},arpi_{_{\! S}})-(lpha_{_{\! X}},lpha_{_{\! X}})}zC_{12}T_{1234}^{-}\partial\mathbf{z}\wedge\overline{\partial}\mathbf{z}, \end{aligned}$$

where we have again used leg notation, and have denoted

$$T_{1234}^- := \grave{R}_{23}^- \widehat{R}_{12}^- \check{R}_{34} \acute{R}_{23}, \qquad C_{kl} := \sum_{i=1}^{\dim(v_{\varpi_s})} \grave{R}_{kl}^{-ii}.$$

Theorem (FDG-AK-RÓB-PS-KRS '21)

Each Heckenberger–Kolb calculus $\Omega_q^1(G/L_S)$ admits a unique $U_q(\mathfrak{g})$ -equivariant connection

$$\nabla: \Omega^1_{\sigma}(G/L_S) \to \Omega^1_{\sigma}(G/L_S) \otimes_B \Omega^1_{\sigma}(G/L_S).$$

Theorem (FDG-AK-RÓB-PS-KRS '21)

Each Heckenberger–Kolb calculus $\Omega_q^1(G/L_S)$ admits a unique $U_q(\mathfrak{g})$ -equivariant connection

$$abla: \Omega^1_q(G/L_S) o \Omega^1_q(G/L_S) \otimes_B \Omega^1_q(G/L_S).$$

Moreover, ∇ is torsion free.

Theorem (FDG-AK-RÓB-PS-KRS '21)

Each Heckenberger–Kolb calculus $\Omega_q^1(G/L_S)$ admits a unique $U_q(\mathfrak{g})$ -equivariant connection

$$\nabla: \Omega^1_q(G/L_S) \to \Omega^1_q(G/L_S) \otimes_B \Omega^1_q(G/L_S).$$

Moreover, ∇ is torsion free.

Theorem (AK-JB-RÓB-BG '24)

Each ∇ is a bimodule connection.

Theorem (AC-JR-RÓB)

For each Heckenberger–Kolb calculus $\Omega^1_{\alpha}(G/L_S)$, it holds that

$$N^{(2)} = \left\{ \omega \otimes \nu + \sigma(\omega \otimes \nu) \, | \, \omega, \nu \in \Omega^1_q(G/L_S) \right\}.$$

Theorem (AC-JR-RÓB)

For each Heckenberger–Kolb calculus $\Omega_q^1(G/L_S)$, it holds that

$$N^{(2)} = \{\omega \otimes \nu + \sigma(\omega \otimes \nu) \mid \omega, \nu \in \Omega^1_q(G/L_S)\}.$$

Corollary

Indeed, $N^{(2)}$ is spanned as an $\mathcal{O}_q(G/L_S)$ -bimodule by the elements

$$\mathrm{d} b \otimes \mathrm{d} c + \mathrm{d} (b_{(3)} c S(b_{(1)}) \otimes \mathrm{d} b \qquad \textit{for} \qquad b, c \in \mathcal{O}_q(G/L_S).$$