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1 Introduction

What is noncommutative differential geometry?

The study of non-commutative algebras with algebraic
properties similar to those of C∞(M), for M a smooth
manifold!

So how can we produce an analogue of vector fields and
one-forms for a noncommutative algebra?
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2 Differential Calculi

Definition
A first-order differential calculus over an algebra B is a
B-bimodule Ω1(B) with a linear map

d : B → Ω1(B)

such that d(ab) = d(a)b + adb, for all a,b ∈ B, and the
multiplication map B ⊗ dB → Ω1(B) is surjective.
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What about higher forms? That is, can we extend to get a
differential graded algebra:

B → Ω1(B) → Ω2(B) → · · ·

such that d2 = 0 and d satisfies a graded Leibniz rule.

In general, taking an exterior algebra is not a good idea.
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Take the tensor algebra

T (Ω1(B)) =
⊕
Z≥0

(
Ω1(B)

)⊗k
.

Can we find a B-sub-bimodule N(2) ⊆ Ω1(B)⊗Ω1(B), such
that the quotient

T (Ω1(B))/⟨N(2)⟩

has the (necessarily unique) structure of a differential
graded algebra d extending d : B → Ω1(B)?
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The answer is yes! Moreover, there is ”maximal” way to do
this!

There exists a unique N(2) such that for any other
extension to a dga Γ•, we have the commutative diagram

Ω2(B)
d //

��

Ω3(B)
d //

��

· · ·

B d // Ω1(B)

d
::

δ
$$
Γ2

δ
// Γ3

δ
// · · ·

We call this dga Ω•(B) the maximal prolongation of Ω1(B).
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Example

For the space of one forms Ω1(B), its maximal prolongation is
the usual exterior algebra construction of the de Rham
complex.
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3: Torsion-Free Bimodule Connections

Definition
For a left B-module F , a connection is a linear map
∇ : F → Ω1(B)⊗B F such that

∇(bf ) = db ⊗ f + b∇(f ), for all b ∈ B, f ∈ F .

Definition
A connection ∇ for F is said to be a bimodule connection if

∇(fb) = ∇(f )b + σ(f ⊗ db), for all b ∈ B, f ∈ F ,

for a (necessarily unique) bimodule map

σ : F ⊗ Ω1(B) → Ω1(B)⊗B F .
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Definition
A connection is torsion-free if

Tor := ∧ ◦ ∇ − d = 0,

that is, such that the following diagram commutes

Ω1(B)⊗B Ω1(B)

∧

��

Ω1(B)

∇
77

d ''
Ω2(B)
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Theorem

(A. Carotenuto, RÓB, J. Razzaq) For any torsion-free bimodule
connection ∇ : Ω1(B) → Ω1(B)⊗B Ω1(B), with bimodule map σ,
it holds that N(2) is generated as a B-bimodule by G1 ∪ G2,
where

G1 :=
{
ω ⊗ ν + σ(ω ⊗ ν) |ω, ν ∈ Ω1(B)

}
G2 :=

{
∇(db) |b ∈ B

}
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4: Quantum Homogeneous Spaces

Definition
Let A be a Hopf algebra. A quantum homogeneous space is a
coideal subalgebra B ⊆ A such that A is faithfully flat as a right
B-module.
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Proposition

Let Ω1(B) be a first-order differential calculus over B
endowed with a “compatible” left A-coaction. Denote
B+ = ker(εA) ∩ B, and assume that Ω1(B)B+ = B+Ω1(B).

Then for any equivariant bimodule connection, with
associated bimodule map σ, it holds that

σ(db ⊗ dc) = d(b(3)cS(b(2))⊗ db(1), for all b, c ∈ B.

Note: σ is independent of the choice of connection.
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5: Drinfeld–Jimbo Quantum Flag Manifolds

Let g be a complex semisimple Lie algebra, and G the
corresponding connected, simply connected, compact Lie
group.

For any q ∈ R>0, the Drinfeld–Jimbo quantum groups are
a dual pair

Oq(G)× Uq(g) → C,

of (co)quasitriangular Hopf algebras.
When q = 1, we recover the algebra of representable
(polynomial) functions O(G), and the universal enveloping
algebra U(g).
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For S a subset of simple roots, we have the quantum Levi
subalgebra

Uq(lS) :=
〈
Ki ,Ej ,Fj | i = 1, . . . , r ; j ∈ S

〉

Definition
For S a subset of simple roots of g, the corresponding quantum
flag manifold is the invariant subspace

Oq(G/LS) :=Oq(G)Uq(lS)

=
{

g ∈ Oq(G)|g ◁ X = ε(X )g, ∀X ∈ Uq(lS)
}
.
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Compact Quantum Hermitian Symmetric Spaces

An Oq(Grn,r ) quantum Grassmanian
Bn Oq(Q2n+1) odd quantum quadric
Cn Oq(Ln) symmetric q.-Lagrangian

Grassmannian

Dn Oq(Q2n) even quantum quadric

Dn Oq(Sn) quantum spinor variety

E6 Oq(OP2) quantum Cayley plane

E7 Oq(F) quantum Freudenthal variety
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Theorem (Heckenberger, Kolb ’06)
For each compact quantum Hermitian symmetric flag manifold
Oq(G/LS), there exist precisely two irreducible Uq(g)-covariant
first-order differential calculi for Ω•

q(G/L):

Ω1
q(G/LS) := Ω

(1,0)
q ⊕ Ω

(0,1)
q .

In the q = 1 limit these correspond to the decomposition of
complexified 1-forms into its holomorphic and
anti-holomorphic summands”

Ω1(G/LS) ≃ Ω(1,0) ⊕ Ω(0,1).

How to describe the maximal prolongation of Ω1
q(G/LS) ?

16 / 21



Srnı́ 2024

Theorem (Heckenberger, Kolb ’06)
For each compact quantum Hermitian symmetric flag manifold
Oq(G/LS), there exist precisely two irreducible Uq(g)-covariant
first-order differential calculi for Ω•

q(G/L):

Ω1
q(G/LS) := Ω

(1,0)
q ⊕ Ω

(0,1)
q .

In the q = 1 limit these correspond to the decomposition of
complexified 1-forms into its holomorphic and
anti-holomorphic summands”

Ω1(G/LS) ≃ Ω(1,0) ⊕ Ω(0,1).

How to describe the maximal prolongation of Ω1
q(G/LS) ?

16 / 21



Srnı́ 2024

To do this we need some notation: With respect to the index set
J := {1, . . . , dim(Vϖs)}:

R̂Vϖs ,Vϖs
(vi ⊗ vj) =:

∑
k ,l∈J R̂kl

ij vk ⊗ vl ,

R̂V−w0(ϖs),Vϖs
(fi ⊗ vj) =:

∑
k ,l∈J Ŕ−kl

ij vk ⊗ fl ,

R̂Vϖs ,V−w0(ϖs)
(vi ⊗ fj) =:

∑
k ,l∈J R̀−kl

ij fk ⊗ vl ,

R̂V−w0(ϖs),V−w0(ϖs)
(fi ⊗ fj) =:

∑
k ,l∈J Řkl

ij fk ⊗ fl .

Moreover, we denote by R̂−, Ŕ, R̀, and Ř−, the inverse matrices
of R̂, Ŕ−, R̀−, and Ř respectively.
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The subbimodule N(2) can now be given in terms of the
standard matrix generator z := (zij)(ij):

First are the holomorphic relations

Q̂12Ŕ23∂z ∧ ∂z = 0, P̌34Ŕ23∂z ∧ ∂z = 0, (1)

where we have used leg notation, and have denoted

Q̂ := R̂ + q(ϖs,ϖs)−(αx ,αx )id, P̌ := Ř − q(ϖs,ϖs)id.

Second are the anti-holomorphic relations

P̂12Ŕ23∂z ∧ ∂z = 0, Q̌34Ŕ23∂z ∧ ∂z = 0, (2)

where we have again used leg notation, and have denoted

P̂ := R̂ − q(ϖs,ϖs)id, Q̌ := Ř + q(ϖs,ϖs)−(αx ,αx )id.
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Finally, we have the cross-relations

∂z ∧ ∂z = − q−(αx ,αx ) T−
1234∂z ∧ ∂z

+ q(ϖs,ϖs)−(αx ,αx )zC12T−
1234∂z ∧ ∂z,

where we have again used leg notation, and have denoted

T−
1234 := R̀−

23R̂−
12Ř34Ŕ23, Ckl :=

dim(Vϖs )∑
i=1

R̀−ii
kl .
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Theorem (FDG-AK-RÓB-PS-KRS ’21)

Each Heckenberger–Kolb calculus Ω1
q(G/LS) admits a unique

Uq(g)-equivariant connection

∇ : Ω1
q(G/LS) → Ω1

q(G/LS)⊗B Ω1
q(G/LS).

Moreover, ∇ is torsion free.

Theorem (AK-JB-RÓB-BG ’24)
Each ∇ is a bimodule connection.
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Theorem (AC-JR-RÓB)

For each Heckenberger–Kolb calculus Ω1
q(G/LS), it holds that

N(2) =
{
ω ⊗ ν + σ(ω ⊗ ν) |ω, ν ∈ Ω1

q(G/LS)
}
.

Corollary

Indeed, N(2) is spanned as an Oq(G/LS)-bimodule by the
elements

db ⊗ dc + d(b(3)cS(b(1))⊗ db for b, c ∈ Oq(G/LS).
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