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Pavle Pandžić, University of Zagreb, Croatia

The 45th Winter School Geometry and Physics
Srńı, Czech Republic, January 18-25, 2025



Supported by the project “Implementation of cutting-edge research
and its application as part of the Scientific Center of Excellence for
Quantum and Complex Systems, and Representations of Lie
Algebras”, PK.1.1.02, European Union, European Regional
Development Fund.



Joint work in progress with:

Jing-Song Huang, CUHK Shenzhen

Soo Teck Lee, National University of Singapore



Previous work

Our work is for now mostly concerning the case of 3 qubits, and
for this case all of our results are covered by the existing literature.
Some of the authors are

Brylinski
Meyer-Wallach
Piatetski-Shapiro and Rallis
Brion
Baldoni-Vergne
Briand-Luque-Thibon
Walter
Walter-Doran-Gross-Christandl
Le Paige (1881!)



Previous work

We however believe our method is going to prove slightly better
and we will be able to go further, increasing the number of qubits,
and/or going to larger dimensions of factors (qudits).

Another remark is that with our approach we can also understand
the skew version, where the algebra of polynomials is replaced by
the corresponding exterior algebra.
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Qubits

Classical bit: 0 or 1. Qubit: a linear combination α · 0 + β · 1. In
other words, an element of C2.

k-qubit state: an element of (C2)⊗k of norm one, modulo the
action of S1 (projective space).

One would like to classify k-qubit states modulo the action of
U(2)×k .

As a preliminary step, one can consider orbits of GL2(C)×k on
(C2)⊗k . These are algebraic varieties, given as zero sets of some
polynomials in P = P((C2)⊗k).
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Qubits

A typical polynomial will vanish at some but not all points of an
orbit.

But if all elements of a GL2(C)×k - subrepresentation of P vanish
at some point of an orbit, they vanish at all points of that orbit.
Thus one is led to studying the GL2(C)×k -module P.

Studying GL2(C)×k -orbits is not enough to understand k-qubit
states, but it is enough to describe entanglement.

From now on we assume k = 3.
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Entanglement

x ∈ (C2)⊗3 is decomposable (rank 1, pure, non-entangled) if it is
possible to write it as

x = u ⊗ v ⊗ w

for some u, v ,w ∈ C2.

Rank of x ∈ (C2)⊗3 is the minimal number of decomposable
tensors adding up to x .

Clearly, the rank of any tensor is ≤ 8. In fact, it is ≤ 3 (and
generically it is 2).

Note that rank is constant along GL2(C)×3 orbits.
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Howe’s GLn × GLk duality

Consider the natural action of GLn × GLk on polynomials
P(Cn ⊗ Ck).

Let xij denote the coordinate function corresponding to ei ⊗ ej .

Then the algebra of highest weight vectors in P(Cn ⊗ Ck) is a
polynomial algebra freely generated by

x11,

∣∣∣∣x11 x12
x21 x22

∣∣∣∣ ,
∣∣∣∣∣∣
x11 x12 x13
x21 x22 x23
x31 x32 x33

∣∣∣∣∣∣ , · · ·



Howe’s GLn × GLk duality

Consider the natural action of GLn × GLk on polynomials
P(Cn ⊗ Ck).

Let xij denote the coordinate function corresponding to ei ⊗ ej .

Then the algebra of highest weight vectors in P(Cn ⊗ Ck) is a
polynomial algebra freely generated by

x11,

∣∣∣∣x11 x12
x21 x22

∣∣∣∣ ,
∣∣∣∣∣∣
x11 x12 x13
x21 x22 x23
x31 x32 x33

∣∣∣∣∣∣ , · · ·



Howe’s GLn × GLk duality

Consider the natural action of GLn × GLk on polynomials
P(Cn ⊗ Ck).

Let xij denote the coordinate function corresponding to ei ⊗ ej .

Then the algebra of highest weight vectors in P(Cn ⊗ Ck) is a
polynomial algebra freely generated by

x11,

∣∣∣∣x11 x12
x21 x22

∣∣∣∣ ,
∣∣∣∣∣∣
x11 x12 x13
x21 x22 x23
x31 x32 x33

∣∣∣∣∣∣ , · · ·



Howe’s GLn × GLk duality

It is easy to see that these determinants are highest weight vectors
(repeated rows/columns).

It is also easy to see they are algebraically independent (leading
terms are x11, x11x22, x11x22x33, ... Here “leading” is meant wrt
reverse lexicographic order on the indices.)

It is harder to see that these determinants indeed generate the
whole algebra of highest weight vectors. For this, Howe uses some
nontrivial algebraic geometry argument.
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3 qubits: GL×3
2 -structure of P = P((C2)⊗3)

The most obvious highest weight vector is x111; it has weight
(1, 0)⊗ (1, 0)⊗ (1, 0) and thus generates a 23 = 8-dimensional
representation. This representation is of course (C2)⊗3, and we
have accounted for all degree 1 polys.

In degree 2 we have the highest weight vector x2111 of weight
(2, 0)⊗ (2, 0)⊗ (2, 0), generating a 27-dimensional representation.
Since

dimP2 =

(
2 + 7

7

)
= 36,

we are missing 9 dimensions.
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The following polynomials are analogues of Howe’s determinants:

d12 =

∣∣∣∣x111 x121
x211 x221

∣∣∣∣ , d13 =

∣∣∣∣x111 x112
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∣∣∣∣ , d23 =

∣∣∣∣x111 x112
x121 x122
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(Keep one index 1, do Howe’s determinant on the other 2 indices.)

These are highest weight vectors of weights

(1, 1)⊗(1, 1)⊗(2, 0), (1, 1)⊗(2, 0)⊗(1, 1), (2, 0)⊗(1, 1)⊗(1, 1),

bringing dimensions 3,3,3, exactly what we need.



3 qubits: GL×3
2 -structure of P = P((C2)⊗3)

The following polynomials are analogues of Howe’s determinants:

d12 =

∣∣∣∣x111 x121
x211 x221

∣∣∣∣ , d13 =

∣∣∣∣x111 x112
x211 x212

∣∣∣∣ , d23 =

∣∣∣∣x111 x112
x121 x122

∣∣∣∣ .
(Keep one index 1, do Howe’s determinant on the other 2 indices.)

These are highest weight vectors of weights

(1, 1)⊗(1, 1)⊗(2, 0), (1, 1)⊗(2, 0)⊗(1, 1), (2, 0)⊗(1, 1)⊗(1, 1),

bringing dimensions 3,3,3, exactly what we need.



3 qubits: GL×3
2 -structure of P = P((C2)⊗3)

The leading terms of the above representations are the diagonals:
x111x221, x111x212, x111x122. The (highest) weights are easily read
off from these leading terms.

The leading terms are again taken with respect to reverse
lexicographical order of the indices. They behave nicely with
respect to multiplication and are very important for everything that
follows. The keyword here is SAGBI.
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Now we move to degree N = 3; so far we have

x3111, x111d12, x111d13, x111d23.

The total dimension these bring is 112, but dimP3 =
(3+7

7

)
= 120,

so we are missing 8.

Let ω12 = e
(3)
21 d12 = x111x222 + x112x221 − x212x121 − x211x122.

(a sort of cubic determinant.)

Furthermore, let η12 =
1
2e

(3)
21 ω12 =

∣∣∣∣x112 x122
x212 x222

∣∣∣∣.
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Then the polynomial

f3 = x111ω12 − 2x112d12

is a highest weight vector (the corresponding representation is a
PRV component in P1 ⊗ P2.)

The leading term of f3 is x2111x222, hence its weight is
(2, 1)⊗ (2, 1)⊗ (2, 1).

So the representation has dimension 8, and we get what we
wanted.
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3 qubits: GL×3
2 -structure of P = P((C2)⊗3)

In degree 4, we are missing a 1-dimensional representation, and we
obtain it by setting

f4 = ω2
12 − 4d12η12

(it is a PRV component in P2 ⊗ P2.)

The leading term of f4 is x2111x
2
222, and we see that f 23 and x2111f4

have the same leading term.

This leads to the relation

f 23 = x2111f4 − 4d12d13d23.

We will see that this relation is closely related to multiplicity in the
decomposition of P.
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By now we have constructed highest weight vectors

xa111d
b
12d

c
13d

d
23f

e
3 f

f
4 ,

where a, b, c , d , f ∈ Z+ and e = 0, 1.

The leading term of the above highest weight vector is

xa+b+c+d+2e+2f
111 xb221x

c
212x

d
122x

e+2f
222 .

Note that a, b, c , d , e, f can be reconstructed. It follows that the
above vectors are linearly independent.
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2 -structure of P = P((C2)⊗3)

The corresponding highest weight is

(a+ b + c + 2d + 2e + 2f , b + c + e + 2f )⊗
(a+ b + 2c + d + 2e + 2f , b + d + e + 2f )⊗
(a+ 2b + c + d + 2e + 2f , c + d + e + 2f )

The dimension is

(a+ 2d + e + 1)(a+ 2c + e + 1)(a+ 2b + e + 1).
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To see that in this way we have obtained all highest weight
vectors, we have to prove that for each degree N,∑

a,...,f as above
a+2b+2c+2d+3e+4f=N

(a+2d+e+1)(a+2c+e+1)(a+2b+e+1) =

(
N + 7

7

)
.

We have several proofs of this. The easiest one starts with the
remark that both sides are polynomials in N of degree 7, so it is
enough to check equality for N = 0, 1, . . . , 7.

We already know it for N ≤ 4, so we need to check N = 5, 6, 7. It
is a bit tedious to do it by hand, but it is very easy for a computer.
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3 qubits: GL×3
2 -structure of P = P((C2)⊗3)

The representation of GL×3
2 with highest weight

λ⊗ µ⊗ ν = (λ1, λ2)⊗ (µ1, µ2)⊗ (ν1, ν2)

appears in P if and only if:

1. λ1 + λ2 = µ1 + µ2 = ν1 + ν2 (=the degree), and

2. m ≤ M, where

m = max(0, µ2 − λ2, ν2 − λ2) and

M = min

(
µ2 + ν2 − λ2 − e

2
,
λ1 − λ2 − e

2

)
with e ∈ {0, 1} being the parity of µ2 + ν2 − λ2.

If these conditions are satisfied, then the multiplicity of λ⊗ µ⊗ ν
in P is equal to [M]−m + 1.
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One sees that the multiplicity comes from interchanging x2111f4 and
d12d13d23 (these are different, but of the same weight).

Thus the multiplicity is closely related to our relation
f 23 = x2111f4 − 4d12d13d23.
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3 qubits: GL×3
2 -orbits in (C2)⊗3 and entanglement

We denote by πij the representation generated by dij , and by ρ3
the representation generated by f3. We say that πij = 0 on a set A
if every element of πij is 0 on A, and πij ̸= 0 on A if some element
of πij is ̸= 0 on A. (Likewise for ρ3.)

There are six (nonzero) orbits:

(1) The open orbit is given by f4 ̸= 0. It consists of rank two
tensors.

(2) The next orbit, which is open in the zero set of f4, is given by
f4 = 0, ρ3 ̸= 0. It consists of rank three tensors.
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(3) The next three orbits are given by π12 = π13 = 0, π23 ̸= 0,
respectively π12 = π23 = 0, π13 ̸= 0 respectively π13 = π23 = 0,
π12 ̸= 0. Each of these orbits consists of rank two tensors.

(4) The orbit of decomposable (rank one) tensors is given by
π12 = π13 = π23 = 0.

Notice that the rank is not maximal generically. (It is ≤ 3, and
generically 2.)

We skip the (easy and entertaining) proof.
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3 qubits: U×3
2 -invariants in P((C2)⊗3)R

Following Meyer-Wallach, we consider real polynomials, i.e.,
polynomials in variables xijk and x ijk .

The U×3
2 -invariants in the real polynomials separate U×3

2 -orbits in
(C2)⊗3, hence can be used to describe a classification of these
orbits.

Every irreducible V ⊂ (C2)⊗3 can be paired with V ∼= V ∗ to
obtain a unique invariant in VV .

A typical example is ∥x∥2 =
∑

xijkx ijk ∈ (C2)⊗3(C2)⊗3.

Moreover, if V ∼= W , then there is an invariant in VW , as well as
one in WV . (The latter is the complex conjugate of the former.)
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We denote by ϕ1, ϕ12, ϕ13, ϕ23, ϕ3 and ϕ4 the invariants
corresponding respectively to the highest weight vectors
x111, d12, d13, d23, f3 and f4; here each representation gets
combined with its own complex conjugate.

Furthermore, let ζ6 denote the invariant obtained by combining the
representation with highest weight vector x2111f4 with the complex
conjugate of the (equivalent) representation with highest weight
vector d12d13d23.

The invariants ϕ1, ϕ12, ϕ13, ϕ23, ϕ3, ϕ4, ζ6 and ζ6 generate the
algebra of invariants. Their degrees are respectively 2,4,4,4,6,8,12
and 12, and it is easy to write down their leading terms.
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3 qubits: U×3
2 -invariants in P((C2)⊗3)R

To finish the classification of U×3
2 -orbits, one needs to write down

the relations between the above generators, and then assign values
to generators so that the relations are satisfied. Also, the values of
ϕ1, ϕ12, ϕ13, ϕ23, ϕ3, ϕ4 have to be positive, while the value of ζ6
must be complex conjugate to the value of ζ6.

These orbits were written down by Brylinski, and we get to
reproduce his result with a different proof.
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