BRST and beyond

Ľuboš Ravas

Supervisor: Eugenia Boffo, PhD.

Department of Theoretical Physics Faculty of Mathematics, Physics and Informatics Comenius University, Bratislava

January 21, 2025

イロト イヨト イヨト イヨト

æ

Contents

Introduction

Becchi-Rouet-Stora-Tyutin

Batalin-Vilkovisky

Homological perturbation lemma

・ロト ・日ト ・ヨト ・ヨト

æ

Introduction

This talk will be discussing BRST formalism¹ and demonstrating it on two examples: mechanical system with SO(3) symmetry and Yang-Mills theory. Afterwards, we will move on to the BV^2 , again we will be using Yang-Mills as an example and finally we will take a look at the homological perturbation lemma (HPL).

¹C. Becchi, A. Rouet, and R. Stora, "Renormalization of Gauge Theories," Annals Phys., vol. 98, pp. 287–321, 1976.

²I. A. Batalin and G. A. Vilkovisky, "Quantization of Gauge Theories with Linearly Dependent Generators," Phys.

BRST Introduction

We start this section by listing some ingredients and either indroducing them or reminding oureselves of them. We will mostly follow book by Marián Fecko³ and notes by José Figueroa-O'Farrill⁴

Ingredients

What we need:

- symplectic manifold $\mathcal{M} \equiv (\mathcal{M}, \omega)$
- Lie group G and its algebra \mathcal{G}
- moment map $\Phi : \mathcal{M} \to \mathcal{G}^*$
- Chevalley-Eilenberg complex
- Koszul resolution
- ghosts and antighosts

< 🗇 🕨 < 🖃 🕨

∃ >

$\mathcal{M} \& G$

 \mathcal{M} :

- \blacktriangleright a symplectic manifold with symplectic form ω
- ► the symplectic form non-degenerate, closed 2-form *G*:
 - ► Lie group a group that is also a smooth manifold
 - has a Lie algebra *G* − a linear space with bilinear operation *G* × *G* → *G* that is antisymmetric and satisfies Jacobi identity

(4月) キョン キョン

Moment map

Moment map $(\Phi : \mathcal{M} \to \mathcal{G}^*)$:

- ► $i_{\zeta_X}\omega = -d\Phi_X$, where *i* is the interior product, ζ_X is Hamiltonian vector field, ω is symplectic form and Φ_X is a zero form (also sometimes referred to as moment map)
- $\Phi_{X+\lambda Y} = \Phi_X + \lambda \Phi_Y$, where $X, Y \in \mathcal{G}$ and $\lambda \in \mathbb{C}$
- ► { Φ_X, Φ_Y } = $\Phi_{[X,Y]}$, where $X, Y \in \mathcal{G}$, {-,-} is Poisson bracket defined $\omega(\zeta_f, \zeta_g) := \{f, g\}$ and [-,-] is the Lie bracket of \mathcal{G}

Complex and resolution

Chevalley-Eilenberg chain complex ($C^{p}(\mathcal{G}, V), d_{CE}$):

- ▶ vector space $C^{\rho} = \Lambda^{\rho} \mathcal{G}^* \otimes V$, where V is the representation space of a representation ρ
- differential d_{CE} = -¹/₂ f^k_{ij} εⁱ ε^j i_k ⊗ î + εⁱ ⊗ ρ(E_i), where εⁱα = Eⁱ ∧ α, i is interior product, f^k_{ij} are structure constants and E_i (Eⁱ) is a base of G (G*)
 d²_{CE} = 0

Koszul resolution:

• Koszul cochain complex (K^p, δ) , where $K^p = \Lambda^p \mathcal{G} \otimes C^{\infty}(\mathcal{M})$

• cohomology of this complex is $H^{i}(K^{\bullet}) = \begin{cases} C^{\infty}(\mathcal{M}_{P}), \text{ for } i=0\\ 0, \text{ for } i\neq 0 \end{cases}$

(日) (四) (三) (三) (三) (三)

Bigraded complex

Now we combine complex and resolution and get

$$C^{p}(\mathcal{G}, \mathcal{K}^{q}) = \Lambda^{p}\mathcal{G}^{*} \otimes \Lambda^{q}\mathcal{G} \otimes C^{\infty}(\mathcal{M}) \equiv C^{p,q},$$
 (1)

which is Chevalley-Eilenberg complex where the representation space is chosen to be the Koszul complex. The differential for this bicomplex would be $D = d_{CE} + (-1)^p \delta$. However, this differential does not respect the bidegree, only the total degree n = p - q and therefore the complex we will use is $\mathscr{C}^n = \bigoplus_{p-q=n} C^{p,q}$ with $D : \mathscr{C}^n \to \mathscr{C}^{n+1}$. As for the cohomology $H^i(\mathscr{C}^{\bullet}) \cong H^i(\mathcal{G}, C^{\infty}(\mathcal{M}_P))$.

イロト イヨト イヨト イヨト

In diagrams

The bidegree diagram:

The total degree diagram:

$$\mathscr{C}^n \xrightarrow{D} \mathscr{C}^{n+1},$$
 (3)

イロト イヨト イヨト イヨト

3

where $\mathscr{C}^n = C^{n,0} \oplus C^{n+1,1} \oplus ... \oplus C^{N-1,N-n-1} \oplus C^{N,N-n}$

Bigraded complex diagram

(For clarity of the diagram on this and the next slide $d \equiv d_{CE}$)

イロト イヨト イヨト イヨト

Bigraded complex diagram

$$\mathscr{C}^{0} = C^{0,0} \oplus C^{1,1} \oplus C^{2,2} \oplus \dots$$
 (4)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

Symplectic reduction

Symplectic reduction:

- ▶ takes the symplectic manifold \mathcal{M} and reduces it to a smaller symplectic manifold $\hat{\mathcal{M}}_P$
- projection $\pi : \mathcal{M}_P \to \hat{\mathcal{M}}_P$
- $\mathcal{M}_P := \{m \in \mathcal{M} | \Phi(m) = P\}$, where $P \in \mathcal{G}^*$ and $\Phi : \mathcal{M} \to \mathcal{G}^*$ is the moment map
- ▶ symplectic form: $\pi^*\hat{\omega} = j^*\omega$, where $j : \mathcal{M}_P \to \mathcal{M}$ is an inclusion

• (notation often is
$$\hat{\mathcal{M}}_P \equiv \mathcal{M}//\mathcal{G}$$
)

(4月) (4日) (4日)

Symplectic reduction

BRST

Our complex (\mathscr{C}^n , Q_{BRST}) consists of:

- $\blacktriangleright C^{p,q} = \Lambda^p \mathcal{G}^* \otimes \Lambda^q \mathcal{G} \otimes C^\infty(\mathcal{M})$
- $Q_{BRST} = \{d_{CE}, -\}$, where d_{CE} in the ghost notation is $d_{CE} = c^i \Phi_i \frac{1}{2} f_{ij}^k c^i c^j b_k$

The ghost notation:

- ghost c, Grassman odd variable, gh(c) = 1 (ghost number)
- antighost *b*, Grassman odd variable, gh(b) = -1
- $\{c^i, b_j\} = \delta^i_j, \{c, c\} = 0 = \{b, b\}$

イロト イポト イモト イモト 一日

Cohomology of BRST

Difficult and long algebra provides an isomorphism⁵:

$$H^{0}(\mathcal{G}, C^{\infty}(\mathcal{M}_{P})) \cong C^{\infty}(\hat{\mathcal{M}}_{P}),$$
(5)

$$H^{0}(\mathscr{C}^{\bullet}) \cong C^{\infty}(\hat{\mathcal{M}}_{P}), \tag{6}$$

which tells us that instead of dealing with the algebraic problem of smooth functions on reduced symplectic manifold, we can simply focus on cohomologies of the BRST complex.

⁵This is explicitly derived in the notes of Figueroa-O'Farrill (Figueroa-O'Farrill, J. (2006). BRST Cohomology)

SO(3) example

Let us have a mechanical system with SO(3) symmetry.⁶

- structure constants $f_{ij}^k = \epsilon_{ij}^k$
- moment map is the angular momentum $\Phi_i = L_i = \epsilon_{ii}^k x^j p_k$
- coordinates are orthogonal to moment map $\vec{x} \cdot \vec{L} = 0$
- ► $\{L_i, L_j\} = \epsilon_{ij}^k L_k \sim c_{ij} x^k L_k$ structure constants are not unique
- solution is new ghost/antighost pair and additional term in the differential

⁶Hancharuk, A and Strobl, T. (2022) BFV extensions for mechanical systems with Lie-2 symmetry.

SO(3) example

The new ghost pair:

- ghost η , Grassman odd variable, $gh(\eta) = 2$
- antighost ρ , Grassman odd variable, $gh(\rho) = -2$

The new differential will be $Q_{BRST} = \{d_{new}, -\}$, where

$$d_{new} = c^i L_i - \frac{1}{2} \epsilon^k_{ij} c^i c^j b_k + \eta x^i b_j \tag{7}$$

イロト イヨト イヨト イヨト

æ

Yang-Mills example

The Yang-Mills theory consists of:

- Action $S_{YM} = -\frac{1}{2} \int F \wedge *F$
- Field strength $F = dA + \frac{1}{2}[A \wedge A]$
- Covariant derivative $D_A = d + [A, -]$
- ▶ Potential $A \rightarrow A + D_A \lambda$

To get BRST we switch function λ with a ghost field c. This will also introduce the antighost field b and the Nakanishi-Lautrup field h

(日) (日) (日)

Yang-Mills example

The differential will act as:

- $\triangleright \ Q_{BRST}c = -\frac{1}{2}[c,c]$
- $\blacktriangleright \quad Q_{BRST} b = h$
- $\blacktriangleright Q_{BRST} h = 0$
- $\triangleright \quad Q_{BRST}A = D_Ac$

The Yang-Mills action

- BRST-invariant $Q_{BRST}S_{YM} = 0$
- we have to add term $Q_{BRST}(bd^*A) = hd^*A + bd^*D_Ac$
- action $S = S_{YM} + \int (hd^*A + bd^*D_Ac)$
- ▶ partition function $Z = \int DADcDbDh \ e^{iS_{YM}}e^{i\int (hd^*A+bd^*D_Ac)}$

(日本) (日本) (日本)

BV and HPL introduction

In this section we are going to show antifields and then take a look at action integral of Yang-Mills theory. In the last part we will talk about homotopy equivalence, deformation retract and HPL. We will follow shortened version of master thesis by Ján Pulmann⁷

⁷Pulmann, J. (2016). Effective action and homological perturbation lemma

Antifields

Let us start with the classification of the fields. We have fields that are Grassman odd/even, and we have ghosts/antighosts. To only have one grading let statistic of a field χ be $gh(\chi)$ mod2. Antifields:

- ▶ antifield of χ will be χ^{\ddagger}
- opposite statistics as its field
- $gh(\chi) + gh(\chi^{\ddagger}) = -1$

(日) (日) (日)

Statistics

The relation $gh(\chi) + gh(\chi^{\ddagger}) = -1$ gives $gh(c^{\ddagger}) = -2$, $gh(b^{\ddagger}) = 0$ and $gh(h^{\ddagger}) = -1$.

Grassman parity :evenoddevenoddgh(-) :-2-101fields c^{\ddagger} $A^{\ddagger}, b, h^{\ddagger}$ A, h, b^{\ddagger} c

イロト イヨト イヨト イヨト

Yang-Mills

Starting from BRST of Yang-Mills action:

•
$$S[A, c, b, h] = S_{YM}[A] + Q_{BRST}\Psi[A, c, b, h]$$
, where
 $\Psi = \int bd^*A$

• using antifields⁸:
$$S[A, \chi, \chi^{\ddagger}] = S_{YM}[A] + (Q_{BRST}\chi)^n \chi_n^{\ddagger}$$

•
$$\chi^{\ddagger}$$
 is given by $\chi^{\ddagger}_n = rac{\delta \Psi}{\delta \chi^n}$

• classical master equation: $\frac{\delta_R S}{\delta \chi_n^{\dagger}} \frac{\delta_L S}{\delta \chi_n^n} = 0$

Quantum master equation

Quantum master equation:

- we generalize action so that it is no longer linear in antifields
- $\blacktriangleright \Delta e^{\alpha S[\chi,\chi^{\ddagger}]} = 0 \implies \{S,S\} + \frac{2}{\alpha} \Delta S = 0$
- α is a parameter that is usually chosen to be $-\frac{1}{\hbar}$
- bracket $\{A, B\} = \frac{\delta_R A}{\delta \chi^n} \frac{\delta_L B}{\delta \chi_n^{\dagger}} \frac{\delta_R A}{\delta \chi_n^{\dagger}} \frac{\delta_L B}{\delta \chi^n}$
- BV Laplacian $\Delta A = (-1)^{|A||\chi^n|+1} \frac{\delta_L}{\delta\chi^n} \frac{\delta_R A}{\delta\chi_n^{\frac{1}{n}}}$
- for classical part of action: $\{S_{class}, S_{class}\} = 0$

Homotopy equivalence

The homotopy equivalence is given by:

$$h \overset{p}{\underset{i}{\longrightarrow}} (V, d_V) \overset{p}{\underset{i}{\longleftarrow}} (W, d_W) \tag{8}$$

イロン イヨン イヨン イヨン

- (V, d_V) and (W, d_W) are chain complexes
- ▶ p, i are quasi-isomorphisms, $i \circ p = 1 + d_V \circ h + h \circ d_V$
- for $p \circ i = 1$ on W deformation retract
- ▶ if also $h \circ i = 0$, $p \circ h = 0$ and $h \circ h = 0$ special deformation retract

Homological perturbation lemma

HPL: Let us have homotopy equivalence (8) and $\delta : V \to V$ such that $|d_V| = |\delta|$ and $(d_V + \delta)^2 = 0$, then for invertible $(1 - \delta h)$ there is a homotopy equivalence:

$$h' \underbrace{\longrightarrow}_{i'} (V, d_V + \delta) \xrightarrow{p'}_{i'} (W, d'_W)$$
(9)

(D) (A) (A) (A) (A)

and if the original homotopy equivalence was a special deformation retract, this perturbed one is also.

HPL

$$h' \longrightarrow (V, d_V + \delta) \xrightarrow{p'} (W, d'_W)$$
 (10)

$$h' = h + hA\delta h \tag{11}$$

$$h' = p + pA\delta h \tag{12}$$

$$i' = i + hA\delta i \tag{13}$$

◆□ → ◆御 → ◆臣 → ◆臣 →

$$d'_W = d_W + pA\delta i \tag{14}$$

where $A = (1 - \delta h)^{-1}$.

References

- 1. Fecko, M. (2006). Differential geometry and Lie groups for physicists. (book)
- 2. Figueroa-O'Farrill, J. (2006). BRST Cohomology (notes available online)
- 3. Boffo, E. (2024) TQFT course (notes available in my notebooks)
- 4. Hancharuk, A and Strobl, T. (2022) BFV extensions for mechanical systems with Lie-2 symmetry.
- 5. Pulmann, J. (2016). Effective action and homological perturbation lemma

(D) (A) (A) (A) (A)