Conserved quantities for conformal loxodromes on conformal sphere

Lenka Zalabová

Srní 2025 joint with Prim Plansangkate

Jihočeská univerzita v Českých Budějovicích University of South Bohemia in České Budějovice

Conformal sphere S^n

A conformal Riemannian structure on a smooth manifold M of dimension n ... class of Riemannian metrics that differ by a multiple of an everywhere positive function.

- The homogeneous model (maximally symmetric conformal manifold) ... the sphere *S*ⁿ with the conformal class represented by the standard round metric.
- The Lie group of conformal transformations ... isomorphic to G := O(n+1,1), with the Lie algebra $\mathfrak{g} := \mathfrak{so}(n+1,1)$.
- ... follows from the realization of S^n as the projectivization of the cone of non-zero null-vectors in the pseudo-Euclidean space $\mathbb{R}^{n+1,1}$ of signature (n+1,1).
- The group G ... acts transitively on S^n and the stabilizer of a point is the Poincaré subgroup $P \subset G$, so $S^n \cong G/P$.

Matrix description of S^n

We write elements of $\mathfrak g$ as (1, n, 1)-block matrices

$$\begin{pmatrix}
a & Z & 0 \\
X & A & -Z^T \\
0 & -X^T & -A
\end{pmatrix}$$

for $a \in \mathbb{R}$, $A \in \mathfrak{so}(n)$ and $X, Z^t \in \mathbb{R}^n$.

- The Lie algebra $\mathfrak{p} \subset \mathfrak{g}$ corresponds to the upper triangular matrices ... red
- There is a natural complement \mathfrak{c} of \mathfrak{p} in \mathfrak{g} such that $\mathfrak{g} = \mathfrak{c} \oplus \mathfrak{p}$ giving natural exponential coordinates on S^n around the origin o = eP ... blue

... reflects the projectivization of the cone in $\mathbb{R}^{n+1,1}$

$$\exp\left(\begin{smallmatrix} 0 & 0 & 0 \\ X & 0 & 0 \\ 0 & -X^T & 0 \end{smallmatrix} \right) o = \left(\begin{smallmatrix} 1 & 0 & 0 \\ X & E & 0 \\ -\frac{1}{2}\langle X, X \rangle & -X^T & 1 \end{smallmatrix} \right) \left(\begin{smallmatrix} 1 \\ 0 \\ 0 \end{smallmatrix} \right) = \left(\begin{smallmatrix} 1 \\ X \\ -\frac{1}{2}\langle X, X \rangle \end{smallmatrix} \right),$$

 $\langle \; , \; \rangle \; ... \;$ the standard scalar product on \mathbb{R}^n

Curves

We consider the curve

$$\gamma = (\gamma_i(t)), \quad i = 1, \ldots, n.$$

We denote

- $U = \gamma' = (\frac{d}{dt}\gamma(t))$... velocity vector
- $A = U' = (\frac{d^2}{dt^2}\gamma(t))$... acceleration vector

and so on for subsequent derivatives.

We denote the length of the velocity vector

$$u=\sqrt{\langle U,U\rangle}$$

for the standard scalar product on \mathbb{R}^n .

Standard tractors

We employ tractor viewpoint on curves here.

- We consider the standard tractor bundle with the tractor metric ... modeled on \mathbb{R}^{n+2} with the standard pseudo-metric of signature (n+1,n).
- We deal with the standard representation

$$\rho:\mathfrak{so}(n+1,1)\to\mathfrak{gl}(\mathbb{R}^{n+2}).$$

■ The (flat) standard tractor connection ... decomposes into the fundamental derivative and the algebraic action

$$D + \rho$$
,

where we view tractors as sections of $\mathfrak{c} \times \mathbb{R}^{n+2}$, i.e. we employ the description in exponential coordinates ... restriction to \mathfrak{c} .

Tractor series for curves

For each curve γ ... canonical series of derived standard tractors by means of the tractor derivative.

We write these tractors via coordinates in the standard basis of \mathbb{R}^{n+2} that we decompose according to the standard tractors as

$$\mathbb{R}^{1+n+1} = \langle e_0 \rangle + \langle e_1, \dots, e_n \rangle + \langle e_{n+1} \rangle.$$

$$\mathbb{T} = u^{-1} e_0$$

$$\mathbb{U} = \mathbb{T}' = -u^{-3} \langle U, A \rangle e_0 + \sum_{i=1}^n u^{-1} U_i e_i$$

$$\mathbb{A} = \mathbb{U}' = (u^{-3} (\langle A, A \rangle - \langle U, A' \rangle) + 3u^{-5} \langle U, A \rangle^2) e_0$$

$$+ \sum_{i=1}^n (-2u^{-3} \langle U, A \rangle U_i + u^{-1} A_i) e_i - u e_{n+1}$$

. .

Conformal circles

The curve is a conformal circle ... $\mathbb{T}, \mathbb{U}, \mathbb{A}, \mathbb{A}'$ are linearly dependent ... $T_3 := \mathbb{T} \wedge \mathbb{U} \wedge \mathbb{A}$ is parallel along γ for the tractor connection.

■ For each (parametrized) curve ... by means of the tractor metric

	\mathbb{T}	\mathbb{U}	\mathbb{A}	\mathbb{A}'
\mathbb{T}	0	0	-1	0
\mathbb{U}	0	1	0	$-\alpha_1$
\mathbb{A}	-1	0	α_1	$\frac{1}{2}\alpha_1'$
\mathbb{A}'	0	$-\alpha_1$	$\frac{1}{2}\alpha_1'$	α_2

 Then we can use e.g. the Cramer rule to write the tractor combination explicitly

$$\mathbb{A}' = -\alpha_1 \mathbb{U} - \frac{1}{2} \alpha_1' \mathbb{T}$$

Then we compute

$$(\mathbb{T} \wedge \mathbb{U} \wedge \mathbb{A})' = \mathbb{U} \wedge \mathbb{U} \wedge \mathbb{A} + \mathbb{T} \wedge \mathbb{A} \wedge \mathbb{A} + \mathbb{T} \wedge \mathbb{U} \wedge (-\alpha_1 \mathbb{U} - \frac{1}{2}\alpha_1' \mathbb{T}) = 0.$$

3-tractor T_3

We compute $T_3 := \mathbb{T} \wedge \mathbb{U} \wedge \mathbb{A} \in \wedge^3 \mathbb{R}^{n+2}$ explicitly in the basis $b_3 := \{e_i \wedge e_j \wedge e_k : i < j < k\}$

$$T_3 = u^{-3} \sum_{i < j} (U_i A_j - U_j A_i) e_0 \wedge e_i \wedge e_j - u^{-1} \sum_i U_i e_0 \wedge e_i \wedge e_{n+1}.$$

Denoting ϵ_{ij} the alternating symbol and omitting the sums ...

$$T_3 = u^{-3} \epsilon_{ij} U_i A_j \ e_0 \wedge e_i \wedge e_j - u^{-1} U_i \ e_0 \wedge e_i \wedge e_{n+1}.$$

On conformal sphere S^n , each conformal Killing-Yano 2-tensor corresponds to an element of the tractor space $\wedge^3\mathbb{R}^{n+2}$. Then its pairing (w.r.t. the tractor metric) with the 3-tractor $\mathbb{T}\wedge\mathbb{U}\wedge\mathbb{A}$ gives a conserved quantity of conformal circles.

CKY 2-forms and tractors

CKY 2-form ... the tractor bundle for the representation

$$\rho_3:\mathfrak{g}\to\mathfrak{gl}(\wedge^3\mathbb{R}^{n+2})$$

■ To describe the corresponding tractors in exponential coordinates ...

$$\exp(X) \mapsto \exp(-\rho_3(X))(w)$$

where $X \in \mathfrak{c}$ reflects exponential coordinates on the sphere and w are coordinates in the respresentation space.

■ Thus we describe the standard action of

$$\left(\begin{smallmatrix}0&0&0\\x&0&0\\0&-x^T&0\end{smallmatrix}\right)$$

on the standard basis of \mathbb{R}^{n+2} and extend tensorialy.

Conserved quantities for circles

We will use the notation

$$x = (x_i), U = (y_i) = y, A = (z_i) = z$$

where $i = 1, \dots, n$. Here N = n + 1 and 0 < i < j < N and ϵ is the alternating symbol.

$$Q_{0iN} = \frac{1}{\|y\|} y_i + \frac{1}{\|y\|^3} \sum_{k \neq i} x_k \epsilon_{ik} y_i z_k$$

$$Q_{0ij} = \frac{1}{\|y\|} \epsilon_{ji} x_j y_i + \frac{1}{2\|y\|^3} \left(-\sum_{k=1}^n x_k^2 + 2x_i^2 + 2x_j^2 \right) \epsilon_{ij} y_i z_j + \frac{1}{\|y\|^3} \sum_{k \neq i,j} x_k (x_i \epsilon_{kj} y_k z_j + x_j \epsilon_{ik} y_i z_k)$$

$$Q_{0ij} = \frac{1}{\|y\|^3} \epsilon_{ij} y_i z_j \qquad Q_{ijk} = \frac{1}{\|y\|^3} \epsilon_{ijk} x_i y_j z_k$$

Dimension 3

$$Q_{014} = \frac{y_1}{\sqrt{y_1^2 + y_2^2 + y_3^2}} + \frac{x_2(y_1z_2 - y_2z_1)}{(y_1^2 + y_2^2 + y_3^2)^{3/2}} + \frac{x_3(y_1z_3 - y_3z_1)}{(y_1^2 + y_2^2 + y_3^2)^{3/2}}$$

$$Q_{024} = \frac{y_2}{\sqrt{y_1^2 + y_2^2 + y_3^2}} - \frac{x_1(y_1z_2 - y_2z_1)}{(y_1^2 + y_2^2 + y_3^2)^{3/2}} + \frac{x_3(y_2z_3 - y_3z_2)}{(y_1^2 + y_2^2 + y_3^2)^{3/2}}$$

$$Q_{034} = \frac{y_3}{\sqrt{y_1^2 + y_2^2 + y_3^2}} - \frac{x_1(y_1z_3 - y_3z_1)}{(y_1^2 + y_2^2 + y_3^2)^{3/2}} - \frac{x_2(y_2z_3 - y_3z_2)}{(y_1^2 + y_2^2 + y_3^2)^{3/2}}$$

$$Q_{012} = -\frac{x_1y_2 - x_2y_1}{\sqrt{y_1^2 + y_2^2 + y_3^2}} + \frac{\left(x_1^2 + x_2^2 - x_3^2\right)(y_1z_2 - y_2z_1)}{2(y_1^2 + y_2^2 + y_3^2)^{3/2}} - \frac{x_1x_3(y_2z_3 - y_3z_2)}{(y_1^2 + y_2^2 + y_3^2)^{3/2}} + \frac{x_2x_3(y_1z_3 - y_3z_1)}{(y_1^2 + y_2^2 + y_3^2)^{3/2}}$$

$$Q_{013} = -\frac{x_1y_3 - x_3y_1}{\sqrt{y_1^2 + y_2^2 + y_3^2}} + \frac{\left(x_1^2 - x_2^2 + x_3^2\right)(y_1z_3 - y_3z_1)}{2(y_1^2 + y_2^2 + y_3^2)^{3/2}} + \frac{x_1x_2(y_2z_3 - y_3z_2)}{(y_1^2 + y_2^2 + y_3^2)^{3/2}} + \frac{x_2x_3(y_1z_2 - y_2z_1)}{(y_1^2 + y_2^2 + y_3^2)^{3/2}}$$

$$Q_{023} = -\frac{x_2y_3 - x_3y_2}{\sqrt{y_1^2 + y_2^2 + y_3^2}} + \frac{\left(-x_1^2 + x_2^2 + x_3^2\right)(y_2z_3 - y_3z_2)}{2(y_1^2 + y_2^2 + y_3^2)^{3/2}} + \frac{x_1x_2(y_1z_3 - y_3z_1)}{(y_1^2 + y_2^2 + y_3^2)^{3/2}} - \frac{x_1x_3(y_1z_2 - y_2z_1)}{(y_1^2 + y_2^2 + y_3^2)^{3/2}}$$

$$Q_{124} = \frac{y_1z_2 - y_2z_1}{(y_1^2 + y_2^2 + y_3^2)^{3/2}}$$

$$Q_{134} = \frac{y_1z_3 - y_3z_1}{(y_1^2 + y_2^2 + y_3^2)^{3/2}}$$

$$Q_{234} = \frac{y_1z_3 - y_3z_1}{(y_1^2 + y_2^2 + y_3^2)^{3/2}}$$

$$Q_{234} = \frac{y_1z_3 - y_3z_1}{(y_1^2 + y_2^2 + y_3^2)^{3/2}}$$

$$Q_{123} = \frac{x_1y_2z_3 - x_1y_3z_2 - x_2y_1z_3 + x_2y_3z_1 + x_3y_1z_2 - x_3y_2z_1}{(y_1^2 + y_2^2 + y_3^2)^{3/2}}$$

Loxodromes and more general curves

- The curve is circle ... dependency of $\mathbb{T}, \mathbb{U}, \mathbb{A}, \mathbb{A}'$... determinant Δ_4 of the table viewed as a matrix satisfies $\Delta_4=0$
- The curve satisfies $\Delta_5=0$... tractors $\mathbb{T},\mathbb{U},\mathbb{A},\mathbb{A}',\mathbb{A}''$ are linearly dependent ... more general family of curves than loxodromes.

We then compute

$$A'' = \frac{\Delta_4'}{2\Delta_4} A' - \alpha_1 A + \frac{1}{2\Delta_4} (\alpha_1' (2\alpha_2 - \Delta_4) - \alpha_1 \alpha_2') \mathbb{U} + \frac{1}{4\Delta_4} (2\alpha_1 (\alpha_1')^2 - 4\Delta_4^2 - 2\alpha_2'' \Delta_4 - \alpha_1' \alpha_2') \mathbb{T}$$

Let us naively derive $\Delta_4^a \cdot \mathbb{T} \wedge \mathbb{U} \wedge \mathbb{A} \wedge \mathbb{A}'$ for $a \in \mathbb{R}$

$$(\Delta_4^a \cdot \mathbb{T} \wedge \mathbb{U} \wedge \mathbb{A} \wedge \mathbb{A}')' = ((\Delta_4^a)' + \Delta_4^a \cdot \frac{\Delta_4'}{2\Delta_4}) \cdot \mathbb{T} \wedge \mathbb{U} \wedge \mathbb{A} \wedge \mathbb{A}'$$

$$\bullet$$
 $a\Delta_4^{a-1}\Delta_4' + \Delta_4^a \cdot \frac{\Delta_4'}{2\Delta_4} = 0$... parallel for $a = -\frac{1}{2}$; $\Delta_4' = 0$

Δs ... relative invariants, (non)vanishing independent of reparametrization

Loxodromes

There is a series of absolute invariants

$$\kappa_{1} = -\frac{1}{2}(-\Delta_{4})^{-\frac{5}{2}}(\alpha_{1}\Delta_{4}^{2} - \frac{1}{2}\Delta_{4}\Delta_{4}'' + \frac{9}{16}(\Delta_{4}')^{2})$$

$$\kappa_{2} = -(-\Delta_{4})^{-\frac{1}{4}}((-1)\Delta_{5})^{\frac{1}{2}}\Delta_{4}^{-1}$$

$$\cdots$$

$$\kappa_{\ell} = -(\Delta_{4})^{-\frac{1}{4}}(\Delta_{\ell+1}\Delta_{\ell+3})^{\frac{1}{2}}\Delta_{\ell+2}^{-1}$$

■ The curve is a loxodrome ... κ_1 is constant and κ_2 vanishes.

Then

- The condition $\kappa_2 = 0$ is equivalent to $\Delta_5 = 0$ for $\Delta_4 \neq 0$.
- There is a question on additional conditions to the dependency of tractors that emphasize loxodromes.
- Assuming Δ_4 constant gives α_1 constant for κ_1 constant.
- The condition α_1 constant gives a parametrization.
- If Δ_4 and α_1 are constant, then κ_1 is constant.

4-tractor T_4

We can analogously use $T_4:=\mathbb{T}\wedge\mathbb{U}\wedge\mathbb{A}\wedge\mathbb{A}'$ and its pairing with elements of $\wedge^4\mathbb{R}^{n+2}$ (that correspond to CKY 3-forms) to find conserved quantities.

We compute T_4 in coordinates in the basis

$$b_4 = \{e_i \wedge e_j \wedge e_k \wedge e_l : i < j < k < l\}$$

and we get

$$T_{4} = u^{-4} \epsilon_{ijk} U_{i} A_{j} A'_{k} e_{0} \wedge e_{i} \wedge e_{j} \wedge e_{k} -$$

$$3u^{-4} \langle U, A \rangle \epsilon_{ij} U_{i} A_{j} e_{0} \wedge e_{i} \wedge e_{j} \wedge e_{n+1} +$$

$$u^{-2} \epsilon_{ij} U_{i} A'_{j} e_{0} \wedge e_{i} \wedge e_{j} \wedge e_{n+1}$$

Conserved quantities

We use the notation

$$x = (x_i), U = (y_i) = y, A = (z_i) = z, A' = (v_i) = v$$

where i = 1, ..., n. Here N = n + 1 and 0 < i < j < k < l < N.

$$Q_{0ijN} = \frac{3}{\|y\|^4} \langle y, z \rangle \epsilon_{ij} y_i z_j - \frac{1}{\|y\|^2} \epsilon_{ij} y_i v_j + \frac{1}{\|y\|^4} \sum_{i,j \neq l} x_l \epsilon_{ijl} y_i z_j v_l$$

$$Q_{0ijk} = \frac{3}{\|y\|^4} \langle y, z \rangle \epsilon_{ijk} x_i y_j z_k - \frac{2}{\|y\|^2} \epsilon_{ijk} x_i y) j v_k - \frac{1}{2\|y\|^4} (\sum_{l=1}^n x_l^2 - 2x_i^2 - 2x_j^2 - 2x_k^2) \epsilon_{ijk} + \sum_{l \neq i,j,k} x_l (x_i \epsilon_{ljk} y_j z_k v_l + x_j \epsilon_{ilk} y_i z_k v_l + x_k \epsilon_{ijl} y_i z_j v_l)$$

$$Q_{ijkN} = \frac{1}{\|y\|^4} \epsilon_{ijk} y_i z_j v_k \qquad Q_{ijkl} = \frac{1}{\|y\|^4} \epsilon_{ijkl} x_i y_j z_k v_l$$

Dimension 3

... use scalar product, cross product and wedge product ... thus $a \land b \land c$ is the scale given by the determinant of the corresponding matrix and

$$a \wedge b = \left(\left(\begin{smallmatrix} a_1 & a_2 \\ b_1 & b_2 \end{smallmatrix} \right), - \left(\begin{smallmatrix} a_1 & a_3 \\ b_1 & b_3 \end{smallmatrix} \right), \left(\begin{smallmatrix} a_2 & ta_3 \\ b_2 & tb_3 \end{smallmatrix} \right) \right)$$

$$Q_{0124} = \frac{1}{\|y\|^4} x_1 y \wedge z \wedge v - \frac{1}{\|y\|^2} y \wedge v + \frac{3}{\|y\|^4} \langle y, z \rangle y \wedge z$$

$$Q_{0134} = \frac{1}{\|y\|^4} x_2 y \wedge z \wedge v - \frac{1}{\|y\|^2} y \wedge v + \frac{3}{\|y\|^4} \langle y, z \rangle y \wedge z$$

$$Q_{0234} = \frac{1}{\|y\|^4} x_3 y \wedge z \wedge v - \frac{1}{\|y\|^2} y \wedge v + \frac{3}{\|y\|^4} \langle y, z \rangle y \wedge z$$

$$Q_{0123} = \frac{3}{\|y\|^4} \langle y, z \rangle x \wedge y \wedge z - \frac{1}{\|y\|^2} x \wedge y \wedge v + \frac{1}{2} \frac{\|x\|^2}{\|y\|^4} y \wedge z \wedge v$$

$$Q_{1234} = -\frac{1}{\|y\|^4} y \wedge z \wedge v$$

Dunajski-Krynski, 2021

Consider 4th order ODE

$$\begin{aligned} \frac{dC}{dt} &= 0\\ C &= u^{-2}(\dot{A} - u^{-2}\langle A, A \rangle - 2u^{-2}\langle A, U \rangle + \\ 4u^{-4}\langle U, A \rangle^2 - 2u^{-2}\langle \dot{A}, U \rangle) \end{aligned}$$

...equivalent to the system od four 1^{st} order ODE ... 4n-dimensional Hamiltonian phase space variables $(X, U, \mathcal{P}, \mathcal{R})$

$$\dot{X} = U$$

$$\dot{U} = u^{2} \mathcal{R} - 2 \langle U, \mathcal{R} \rangle U$$

$$\dot{\mathcal{P}} = 0$$

$$\dot{\mathcal{R}} = -|\mathcal{R}|^{2} U + 2 \langle U, \mathcal{R} \rangle \mathcal{R} - \mathcal{P}$$

... Hamiltonian system for the Hamiltonian

$$H = \frac{1}{2}u^2|\mathcal{R}|^2 - \langle U, \mathcal{R} \rangle \mathcal{R} - \mathcal{P}$$

Black magic from Prim in dim 3

 uses Lagrangian viewpoint and conformal Killing vector fields to find conserved quantities of the Mercator equation

Let V be a conformal Killing vector field restricted to γ . Then the function

$$F = \frac{d}{dt} \langle W, \dot{V} \rangle + \langle \dot{W}, \dot{V} \rangle - \langle C, V \rangle, \quad W = u^{-2} U$$

is constant on any solution curve of the Mercator equation.

- ... finds functionally independent set of her quantities
- ... shows that both her and mine quantities commute with the Hamiltonian
- ... finds direct relation between the quantities in the Hamiltonian viewpoint

Black magic from Prim in dim 3

$$F_{T} = \mathcal{P}$$

$$F_{R} = X \wedge \mathcal{P} + U \wedge \mathcal{R}$$

$$F_{D} = \langle X, \mathcal{P} \rangle + \langle U, \mathcal{R} \rangle$$

$$F_{S} = |X|^{2} \mathcal{P} + 2 \langle X, U \rangle \mathcal{R} - 2F_{D}X - 2(1 + \langle X, \mathcal{R} \rangle)U$$

$$L_{1} = |X|^{2} \det(U \mathcal{R} \mathcal{P}) - 2 \det(X U \mathcal{P}) + 2 \langle U, \mathcal{R} \rangle \det(X U \mathcal{R})$$

$$L_{2,3,4} = U \wedge \mathcal{P} - \det(U \mathcal{R} \mathcal{P})X - \langle U, \mathcal{R} \rangle U \wedge \mathcal{R}$$

$$L_{5} = \det(U \mathcal{R} \mathcal{P})$$

$$H = \frac{1}{2}|U|^{2}|\mathcal{R}|^{2} - \langle U, \mathcal{R} \rangle^{2} + \langle U, \mathcal{P} \rangle,$$

$$L_{1} = -\langle F_{R}, F_{S} \rangle$$

$$L_{2,3,4} = \frac{1}{2}F_{T} \wedge F_{S} - F_{D}F_{R}$$

$$L_{5} = \langle F_{T}, F_{R} \rangle$$

$$H = \frac{1}{2}(|F_{R}|^{2} - \langle F_{T}, F_{S} \rangle - F_{D}^{2}),$$

Note on equations

- The invariant part of the tractor equation ... an equation for curves satisfying $\Delta_5 = 0$
- Assuming α and Δ_4 are constants ... the two equations coincide up to a multiple
- ... generally they are different
- ... what is a minimal condition to assume to get the equations same up to multiple