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Spans and Quantum Theory 2

Fact: Quantum theories behave like the category Hilb rather than Set.

▶ Dagger compact categories [Abramsky-Coecke’04,08] with a dagger on
morphisms (f : a→ b) 7→ (f† : b→ a) and dual objects a 7→ a∗.

▶ E.g. Rel (relations of sets), Symp (Lagrangian relations), nCob...

▶ Typically very few (co)limits.

Theorem: If C is a cartesian category with pullbacks, Span(C) is a dagger
compact category.

•

• •

a b c

⌟

For more about this, see [Abramsky-Coecke’04,08], [Selinger’07] and the
webpage of John Baez.

Plan: Do this for gauge QFTs/SFTs in Batalin-Vilkovisky formalism!
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The Setting: Quantum L∞ Algebras 3

Def: A (−1)-shifted symplectic vector space is a finite-dimensional
real Z-graded vector space with a non-degenerate, graded-antisymmetric
bilinear form ω of degree −1.

▶ ω induces the BV Laplacian, for coordinates ϕi ∈ V ∗,

∆ =
1

2
(−1)|i|ωij

∂2

∂ϕi∂ϕj
.

Def:[Zwiebach’92] A quantum L∞ algebra on V is a formal series

S =
∑

n≥2,g≥0
2g+n≥1

Sgnℏg ∈ FV≡ Ŝym(V ∗)((ℏ)), st. ∆eS/ℏ = 0.

▶ Equivalently, S is a Maurer-Cartan element,
1

2
{S, S}+ ℏ∆S = 0,

or the algebra over the operad F(Mod(Lie!)), see [Markl’97].
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Quasi-isomorphism of Quantum L∞ Algebras 4

Let H := Coh(Q : V → V ) induced by {Sfree,−} ≡ {S0
2 ,−} : V ∗ → V ∗,

V = H ⊕ ImQ⊕ IGF ,

where IGF (gauge fixing choice) is Lagrangian (IGF = I⊥GF ) in ImQ⊕ IGF .

Prop: There is a quantum L∞ algebra structure W ∈ FH on cohomology
called the minimal model (or effective action) given (heuristically) by∫

IGF

eS/ℏ
∣∣∣
ImQ=0

d
1
2 V = eW/ℏd

1
2H.

Def: We say quantum L∞ algebras S and S′ are quasi-isomorphic if
their minimal models W and W ′ are isomorphic. This means there is an
invertible non-linear morphism of quantum L∞ algebras,

ϕ : H
∼=−→ H ′ (defined by its action on ϕ∗ : FH ′ → FH),

ϕ∗{−,−}′= {ϕ∗−, ϕ∗−},

ϕ∗ ◦ (ℏ∆′ + {W ′,−}′)= (ℏ∆+ {W,−}) ◦ ϕ∗.
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Linear Lagrangian Relations 5

Def: A Lagrangian relation L : U 99K V is L ⊂ U × V st. L = L⊥.

Prop: The BV integral of eS/ℏ can be understood as an axiomatic
perturbative Gaussian integral along the Lagrangian relation L : V 99K H,

L = {(h+ v, h) ∈ V ×H | v ∈ IGF } ⊂ V ×H.

▶ For linearly quasi-iso S and S′, ∃ the linear Lagrangian relation

V V ′

H H ′L

Gr(ϕ)
(L′)†

which relates S and S′ in the sense that ϕ∗
∫
L e

S/ℏ =
∫
L′ e

S′/ℏ.

▶ This can be formulated in the linear quantum odd symplectic category
(“distributional half-densities”) with morphisms

(C ⊆ U × V coisotropic, f ∈ F(C/C⊥))

originally suggested by [Ševera’02].

▶ These relations compose given conditions on the gauge fixings
(⇔ existence of certain pushouts in the category LinLagr−1).

Lesson: A lot can be encoded in linear relations, but there are limitations.
For more details, see [Jurčo-Pulmann-Z’24].
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Decomposition Theorem 6

▶ How much can we do in terms of just the category of linear maps?

Theorem:[Doubek-Jurčo-Pulmann’17] There is a non-linear isomorphism
(identity modulo ℏ) of quantum L∞ algebras ψV : V → V between S and

p∗(W ) + Sfree ∈ FV = F(H ⊕ ImQ⊕ IGF ),

where p : V→ H is the projection (canonical, given IGF ).

Remark: This comes from a homotopy in the sense of [Costello’11], given
by a quantum L∞ structure on FV ⊗ Ω•([0, 1]). There is an alternative
approach, abstract homological perturbation lemma [Chuang-Lazarev’17].

▶ Then we have the following diagram of quantum L∞ morphisms.

(V, Sfree + p∗W ) (V, S) (V ′, S′) (V ′, S′
free + (p′)∗W ′)

(H,W ) (H ′,W ′)

ψV

p L L′

ψV ′

p′

ϕ
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Spans of Quantum L∞ Algebras (Finally) 7

Now the pullback in GrVect (precisely dg (-1)-symplectic vector spaces with
Poisson chain maps) induces a diagram of quantum L∞ algebra morphisms!

(X,SX)

(V, Sfree + p∗W ) (V, S) (V ′, S′) (V ′, S′
free + (p′)∗W ′)

(H,W ) (H ′,W ′)

π π′

ψV

p L L′

ψV ′

p′

ϕ

⌟

With

X := H ⊕ (ImQ⊕ IGF )⊕ (ImQ′ ⊕ I ′GF ),

SX := (p ◦ π)∗(W ) + π∗Sfree + (π′)∗S′
free.



Spans of Quantum L∞ Algebras (And?) 8

Now we can:

▶ Compose spans along pullbacks in GrVect.

▶ Turn this into a span of relations L̃, L̃′.

▶ Consider a non-linear quasi-isomorphism ϕ.

(X,SX)

(V, Sfree + p∗W ) (V, S) (V ′, S′) (V ′, S′
free + (p′)∗W ′)
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L̃ L̃′

π π′
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Summary and Outlook 9

▶ Using Lagrangian relations or spans, we can describe a homotopy
between quantum L∞ structures on non-isomorphic vector spaces.
Can we extend this approach to the full simplicial enrichment
following [Costello’11]?

FV ⊗ Ω•(∆n)

▶ Truncating the ∞-categorical set up of free BV quantization of
[Gwilliam-Haugseng’16] to the one-categorical level, we get a
weakened version of our BV Lagrangian relations. What is the precise
relationship?

▶ The distributional half-densities suggested by [Ševera’02] and
constructed in [Jurčo-Pulmann-Z’24] rely on a 2-categorical structure
on coisotropic relations. Why?

Thank you for your attention!
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