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For more about this, see [Abramsky-Coecke’04,08], [Selinger’07] and the
webpage of John Baez.
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For more about this, see [Abramsky-Coecke’04,08], [Selinger’07] and the
webpage of John Baez.

Plan: Do this for gauge QFTs/SFTs in Batalin-Vilkovisky formalism!
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Def: A (—1)-shifted symplectic vector space is a finite-dimensional
real Z-graded vector space with a non-degenerate, graded-antisymmetric
bilinear form w of degree —1.

» w induces the BV Laplacian, for coordinates qbi eV,
Ll i 0
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A=3L 01 OpT”

Def:[Zwiebach’92] A quantum L., algebra on V is a formal series

S= > S e Fv=Sym(V)((h), st.  AeSM=o.
n>2,9>0
2g+n>1
» Equivalently, S is a Maurer-Cartan element,

%{S, S}+hAS =0,
or the algebra over the operad F(Mod(Lie')), see [Markl’97].
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Let H := Coh(Q : V — V) induced by {Sfee, —} = {59, =} : V¥ = V*,
V=HeImQ& Ilgp,
where I p (gauge fixing choice) is Lagrangian (Igp = IéF) inImQ® Igr.

Prop: There is a quantum L algebra structure W € FH on cohomology
called the minimal model (or effective action) given (heuristically) by

/ S/h
Iar

Def: We say quantum Lo, algebras S and S are quasi-isomorphic if
their minimal models W and W’ are isomorphic. This means there is an
invertible non-linear morphism of quantum L., algebras,

A2V =V/has .
Im Q=0

¢ H =Ny 4 (defined by its action on ¢* : FH' — FH)
(]5*{—,—}/: {¢*_7¢*_}7
¢ o (RA + (W', =)= (hA + {W,=}) 0 ¢™.
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» For linearly quasi-iso S and S’, 3 the linear Lagrangian relation
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. . * S/h S’ /h
which relates S and S’ in the sense that ¢ fL S/ — f], S/,

JL

» This can be formulated in the linear quantum odd symplectic category
(“distributional half-densities”) with morphisms

(C CU x V coisotropic, f € }"(C/CJ‘))
originally suggested by [Severa’02].

» These relations compose given conditions on the gauge fixings
(& existence of certain pushouts in the category LinLagr_;).

Lesson: A lot can be encoded in linear relations, but there are limitations.

For more details, see [Jurc¢o-Pulmann-Z’24]. .'ll‘.
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» How much can we do in terms of just the category of linear maps?

Theorem:[Doubek-Juréo-Pulmann’17] There is a non-linear isomorphism

(identity modulo /) of quantum Lo algebras ¢y : V — V between S and
p*(W)+ Strec € FV =F(HB®ImQ @ Igr),

where p: V— H is the projection (canonical, given I ).

Remark: This comes from a homotopy in the sense of [Costello’11], given
by a quantum Lo structure on FV @ Q°([0,1]). There is an alternative
approach, abstract homological perturbation lemma [Chuang-Lazarev’17].

» Then we have the following diagram of quantum L. morphisms.

R by Py r [
(V, Stree +p*W) 5 (V. S) (V',8") & (V! Sheo + (@) W)
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Spans of Quantum L., Algebras (Finally) 7

Now the pullback in GrVect (precisely dg (-1)-symplectic vector spaces with
Poisson chain maps) induces a diagram of quantum Lo algebra morphisms!

(X,Sx)

v

With
X=H®(ImQ®Igr)D (ImQ/ @ I&F)v
SX = (p o W)*(W) + 7T*Sfree + (W/)*Sgree'
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Spans of Quantum L., Algebras (And?) 8

Now we can:

h bv. WPy 1 R
(V, Stree + 0" W) 2% (V,9) (V',8") & (V' Shee + ()W)
1 L L/1
N v v /
(HW) ———— (H',W")
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Now we can:

» Compose spans along pullbacks in GrVect.

h bv. Pyr E
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Now we can:
» Compose spans along pullbacks in GrVect.
» Turn this into a span of relations E, L.

» Consider a non-linear quasi-isomorphism ¢.
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Summary and Outlook 9

» Using Lagrangian relations or spans, we can describe a homotopy
between quantum Lo structures on non-isomorphic vector spaces.
Can we extend this approach to the full simplicial enrichment
following [Costello’11]?
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following [Costello’11]?

FVeQtA™)

» Truncating the oo-categorical set up of free BV quantization of
[Gwilliam-Haugseng’16] to the one-categorical level, we get a
weakened version of our BV Lagrangian relations. What is the precise
relationship?

> The distributional half-densities suggested by [Severa’02] and
constructed in [Juréo-Pulmann-7’24] rely on a 2-categorical structure
on coisotropic relations. Why?

Thank you for your attention!
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